Publication: Faster Montgomery Modular Multiplication Without Pre-Computational Phase for Some Classes of Finite Fields
| dc.authorscopusid | 15833929800 | |
| dc.authorscopusid | 6504402955 | |
| dc.authorscopusid | 6603589033 | |
| dc.contributor.author | Akleylek, S. | |
| dc.contributor.author | Cenk, M. | |
| dc.contributor.author | Özbudak, F. | |
| dc.date.accessioned | 2020-06-21T09:27:28Z | |
| dc.date.available | 2020-06-21T09:27:28Z | |
| dc.date.issued | 2010 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Akleylek] Sedat, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cenk] Murat, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey; [Özbudak] Ferruh, Institute of Applied Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey, Department of Mathematics, Middle East Technical University (METU), Ankara, Ankara, Turkey | en_US |
| dc.description.abstract | In this paper, we give faster versions of Montgomery modular multiplication algorithm without pre-computational phase for GF(p) and GF(2m ) which can be considered as a generalization of [3], [4] and [5]. We propose sets of moduli different than [3], [4] and [5] which can be used in PKC applications. We show that one can obtain efficient Montgomery modular multiplication architecture in view of the number of AND gates and XOR gates by choosing proposed sets of moduli. We eliminate precomputational phase with proposed sets of moduli. These methods are easy to implement for hardware. © 2011 Springer Science+Business Media B.V. | en_US |
| dc.identifier.doi | 10.1007/978-90-481-9794-1_75 | |
| dc.identifier.endpage | 408 | en_US |
| dc.identifier.isbn | 9789819680023 | |
| dc.identifier.isbn | 9789819658473 | |
| dc.identifier.isbn | 9789819600571 | |
| dc.identifier.isbn | 9789819644292 | |
| dc.identifier.isbn | 9789819637577 | |
| dc.identifier.isbn | 9789819663392 | |
| dc.identifier.isbn | 9783319030135 | |
| dc.identifier.isbn | 9783642363283 | |
| dc.identifier.isbn | 9789819648115 | |
| dc.identifier.isbn | 9783642384653 | |
| dc.identifier.issn | 1876-1100 | |
| dc.identifier.issn | 1876-1119 | |
| dc.identifier.scopus | 2-s2.0-78651562854 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 405 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/978-90-481-9794-1_75 | |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | Lecture Notes in Electrical Engineering | en_US |
| dc.relation.journal | Lecture Notes in Electrical Engineering | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Elliptic Curve Cryptography | en_US |
| dc.subject | Montgomery Modular Multiplication | en_US |
| dc.subject | Public Key Cryptography | en_US |
| dc.subject | VLSI Implementation | en_US |
| dc.title | Faster Montgomery Modular Multiplication Without Pre-Computational Phase for Some Classes of Finite Fields | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
