Publication:
Hourly Rainfall-Runoff Modelling by Combining the Conceptual Model with Machine Learning Models in Mostly Karst Ljubljanica River Catchment in Slovenia

dc.authorscopusid57207685341
dc.authorscopusid23096457300
dc.authorwosidSraj, Mojca/I-3502-2019
dc.authorwosidSezen, Cenk/Aaa-3312-2022
dc.contributor.authorSezen, Cenk
dc.contributor.authorSraj, Mojca
dc.contributor.authorIDSezen, Cenk/0000-0003-1088-9360
dc.contributor.authorIDSraj, Mojca/0000-0001-7796-5618
dc.date.accessioned2025-12-11T01:21:30Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sezen, Cenk] Ondokuz Mayis Univ, Fac Engn, TR-55139 Samsun, Turkiye; [Sraj, Mojca] Univ Ljubljana, Fac Civil & Geodet Engn, Jamova 2, Ljubljana, Sloveniaen_US
dc.descriptionSezen, Cenk/0000-0003-1088-9360; Sraj, Mojca/0000-0001-7796-5618en_US
dc.description.abstractHydrological modelling, essential for water resources management, can be very complex in karst catchments with different climatic and geologic characteristics. In this study, three combined conceptual models incorporating the snow module with machine learning models were used for hourly rainfall-runoff modelling in the mostly karst Ljubljanica River catchment, Slovenia. Wavelet-based Extreme Learning Machine (WELM) and Wavelet-based Regression Tree (WRT) machine learning models were integrated into the conceptual CemaNeige Genie Rural a 4 parametres Horaires (CemaNeige GR4H). In this regard, the performance of the hybrid models was compared with stand-alone conceptual and machine learning models. The stand-alone WELM and WRT models using only meteorological variables performed poorly for hourly runoff forecasting. The CemaNeige GR4H model as stand-alone model yielded good performance; however, it overestimated low flows. The hybrid CemaNeige GR4H-WELM and CemaNeige-WRT models provided better simulation results than the stand-alone models, especially regarding the extreme flows. The results of the study demonstrated that using different variables from the conceptual model, including the snow module, in the machine learning models as input data can significantly affect the performance of rainfall-runoff modelling. The hybrid modelling approach can potentially improve runoff simulation performance in karst catchments with diversified geological formations where the rainfall-runoff process is more complex.en_US
dc.description.sponsorshipJavna Agencija za Raziskovalno Dejavnost RS [P2-0180]; Slovenian Research and Innovation Agency (ARIS) [UNESCO IHP C3330-20-456010]; Slovenian national committee of the IHP UNESCO; UNESCO Chair on Water-related Disaster Risk Reductionen_US
dc.description.sponsorshipThe authors would like to acknowledge the support of the Slovenian Research and Innovation Agency (ARIS) through grant P2-0180. The research carried out is also supported by the Slovenian national committee of the IHP UNESCO research programme (UNESCO IHP C3330-20-456010) and UNESCO Chair on Water-related Disaster Risk Reduction. The authors also wish to thank the Slovenian Environment Agency (ARSO) for making data publicly available.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s00477-023-02607-w
dc.identifier.endpage961en_US
dc.identifier.issn1436-3240
dc.identifier.issn1436-3259
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85177553194
dc.identifier.scopusqualityQ2
dc.identifier.startpage937en_US
dc.identifier.urihttps://doi.org/10.1007/s00477-023-02607-w
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43199
dc.identifier.volume38en_US
dc.identifier.wosWOS:001105127000001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofStochastic Environmental Research and Risk Assessmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConceptual Model With Snow Moduleen_US
dc.subjectHourly Dataen_US
dc.subjectHybrid Modelingen_US
dc.subjectKarsten_US
dc.subjectLjubljanica River Catchmenten_US
dc.subjectMachine Learningen_US
dc.titleHourly Rainfall-Runoff Modelling by Combining the Conceptual Model with Machine Learning Models in Mostly Karst Ljubljanica River Catchment in Sloveniaen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files