Publication: Detection of Blackouts by Using K-Means Clustering in a Power System
| dc.authorscopusid | 22433630600 | |
| dc.authorscopusid | 55727340000 | |
| dc.authorscopusid | 36460206000 | |
| dc.authorscopusid | 43261101100 | |
| dc.contributor.author | Özgönenel, O. | |
| dc.contributor.author | Thomas, D.W.P. | |
| dc.contributor.author | Yalcin, T. | |
| dc.contributor.author | Bertizlioǧlu, I.N. | |
| dc.date.accessioned | 2020-06-21T09:28:59Z | |
| dc.date.available | 2020-06-21T09:28:59Z | |
| dc.date.issued | 2012 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Özgönenel] Okan, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Thomas] David William Phillip, Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; [Yalcin] Turgay, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Bertizlioǧlu] Ismail Nuri, Electrical and Electronic Engineering Faculty, Ondokuz Mayis Üniversitesi, Samsun, Turkey | en_US |
| dc.description.abstract | This paper presents a novel approach for the detection of abnormal power system states that force systems into blackout. K-means clustering techniques and two types of distances for identifying pattern clusters are used to detect abnormal conditions. PCA is used for the reduction of the data matrix for faster calculations. The proposed hybrid technique is then demonstrated on an IEEE 14-bus system. | en_US |
| dc.identifier.doi | 10.1049/cp.2012.0079 | |
| dc.identifier.isbn | 9780863417290 | |
| dc.identifier.isbn | 9780863419003 | |
| dc.identifier.isbn | 9781849191609 | |
| dc.identifier.isbn | 9781839530029 | |
| dc.identifier.isbn | 9781849195584 | |
| dc.identifier.isbn | 9781849198172 | |
| dc.identifier.isbn | 9781849196246 | |
| dc.identifier.isbn | 9781849195690 | |
| dc.identifier.isbn | 9781785610462 | |
| dc.identifier.isbn | 9780863419027 | |
| dc.identifier.scopus | 2-s2.0-84863696500 | |
| dc.identifier.uri | https://doi.org/10.1049/cp.2012.0079 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/4409 | |
| dc.identifier.volume | 2012 | en_US |
| dc.language.iso | en | en_US |
| dc.relation.ispartof | -- 11th IET International Conference on Developments in Power Systems Protection, DPSP 2012 | en_US |
| dc.relation.journal | IET Conference Publications | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Anomaly (Outlier) Detection | en_US |
| dc.subject | Blackout | en_US |
| dc.subject | K-Means Clustering | en_US |
| dc.subject | Principal Component Analysis (PCA) | en_US |
| dc.title | Detection of Blackouts by Using K-Means Clustering in a Power System | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |
