Publication:
Genotype-Specific Fi C Responses to in Vitro Drought Stress in Myrtle (Myrtus Communis L.): Integrating Machine Learning Techniques

dc.authorscopusid59365137500
dc.authorscopusid58844376300
dc.authorscopusid57778155300
dc.authorscopusid55819710100
dc.authorscopusid36773090700
dc.authorscopusid6603354276
dc.authorscopusid6603354276
dc.authorwosidIsak, Musab/Kbc-8853-2024
dc.authorwosidŞimşek, Özhan/J-1961-2018
dc.authorwosidBozkurt, Taner/Ads-7906-2022
dc.authorwosidSimsek, Ozhan/J-1961-2018
dc.authorwosidDönmez, Dicle/J-7996-2018
dc.contributor.authorBektas, Umit
dc.contributor.authorIsak, Musab A.
dc.contributor.authorBozkurt, Taner
dc.contributor.authorDonmez, Dicle
dc.contributor.authorIzgu, Tolga
dc.contributor.authorTütüncü, Mehmet
dc.contributor.authorSimsek, Ozhan
dc.contributor.authorIDIsak, Musab A/0000-0002-5711-0118
dc.contributor.authorIDŞimşek, Özhan/0000-0001-5552-095X
dc.date.accessioned2025-12-11T01:21:38Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Bektas, Umit; Simsek, Ozhan] Erciyes Univ, Fac Agr, Dept Hort, Kayseri, Turkiye; [Isak, Musab A.; Simsek, Ozhan] Erciyes Univ, Grad Sch Nat & Appl Sci, Agr Sci & Technol Dept, Kayseri, Turkiye; [Bozkurt, Taner] Tekfen Agr Res Prod & Mkt Inc, Adana, Turkiye; [Donmez, Dicle] Cukurova Univ, Biotechnol Res & Applicat Ctr, Adana, Turkiye; [Izgu, Tolga] Natl Res Council Italy, Inst BioEcon, Florence, Italy; [Tutuncu, Mehmet] Ondokuz Mayis Univ Samsun, Dept Hort, Samsun, Turkiyeen_US
dc.descriptionIsak, Musab A/0000-0002-5711-0118; Şimşek, Özhan/0000-0001-5552-095X;en_US
dc.description.abstractBackground: Myrtle ( Myrtus communis L.), native to the Mediterranean region of T & uuml;rkiye, is a valuable plant with applications in traditional medicine, pharmaceuticals, and culinary practices. Understanding how myrtle responds to water stress is essential for sustainable cultivation as climate change exacerbates drought conditions. Methods: This study investigated the performance of selected myrtle genotypes under in vitro drought stress by employing tissue culture techniques, rooting trials, and acclimatization processes. Genotypes were tested under varying polyethylene glycol (PEG) concentrations (1%, 2%, 4%, and 6%). Machine learning (ML) algorithms, including Gaussian process (GP), support vector machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), were utilized to model and predict micropropagation and rooting efficiency. fi ciency. Results: The research revealed a genotype-dependent response to drought stress. Black-fruited genotypes exhibited higher micropropagation rates compared to white-fruited ones under stress conditions. The application of ML models successfully predicted micropropagation and rooting efficiency, fi ciency, providing insights into genotype performance. Conclusions: The fi ndings suggest that selecting drought-tolerant genotypes is crucial for enhancing myrtle cultivation. The results underscore the importance of genotype selection and optimization of cultivation practices to address climate change impacts. Future research should explore the molecular mechanisms of stress responses to refine fi ne breeding strategies and improve resilience in myrtle and similar economically important crops.en_US
dc.description.sponsorshipErciyes University Scientific Research Projects Units [FYL-2023-12821]en_US
dc.description.sponsorshipThis research was funded by Erciyes University Scientific Research Projects Units, grant number FYL-2023-12821. The Office of the Dean for Research at Erciyes University also provided the necessary infrastructure and laboratory facilities at the ArGePark research building. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.7717/peerj.18081
dc.identifier.issn2167-8359
dc.identifier.pmid39391827
dc.identifier.scopus2-s2.0-85206255654
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.7717/peerj.18081
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43219
dc.identifier.volume12en_US
dc.identifier.wosWOS:001333775000001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherPeerj Incen_US
dc.relation.ispartofPeerJen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMyrtleen_US
dc.subjectIn Vitro Drought Stressen_US
dc.subjectPEGen_US
dc.subjectMachine Learningen_US
dc.titleGenotype-Specific Fi C Responses to in Vitro Drought Stress in Myrtle (Myrtus Communis L.): Integrating Machine Learning Techniquesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files