Publication:
Integrating Deep Learning, Grey Wolf Optimization, and SVM for Precise Plant Seedling Classification

dc.authorscopusid59319312900
dc.authorscopusid35732398300
dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.contributor.authorAtchogou, Anselme
dc.contributor.authorTepe, Cengiz
dc.contributor.authorIDTepe, Cengiz/0000-0003-4065-5207
dc.contributor.authorIDAtchogou, Anselme/0009-0002-1593-516X
dc.date.accessioned2025-12-11T01:14:04Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Atchogou, Anselme] Ondokuz Mayis Univ, Grad Educ Inst, Dept Intelligent Syst Engn, Samsun, Turkiye; [Tepe, Cengiz] Ondokuz Mayis Univ, Engn Fac, Dept Elect & Elect Engn, Samsun, Turkiyeen_US
dc.descriptionTepe, Cengiz/0000-0003-4065-5207; Atchogou, Anselme/0009-0002-1593-516Xen_US
dc.description.abstractThe agricultural sector, particularly in emerging economies like Africa, faces significant challenges in weed management, directly impacting yield, production costs, and crop quality. Accurate and early weed identification is pivotal for effective weed control strategies. In response, our research extends beyond conventional deep learning methodologies by integrating Convolutional Neural Networks (CNN) with Grey Wolf Optimization (GWO) and Support Vector Machine (SVM) for enhanced plant seedling classification. Leveraging a dataset of 5539 images across 12 plant species, including essential crops such as Common Wheat, Maize, and Sugar Beet, alongside nine weed types, we embarked on a comprehensive analysis employing four advanced CNN architectures: ResNet-50, Inception-V3, VGG-16, and EfficientNet-B0. Our approach involved initial model training and validation, followed by the application of GWO for feature optimization and SVM for refined classification. Post-optimization, the EfficientNet-B0 model emerged as the frontrunner, showcasing exemplary performance with a remarkable training accuracy of 99.82% and a test accuracy of 98.83%. These results highlight the efficacy of combining CNNs with evolutionary algorithms and machine-learning techniques in agricultural applications. This study illustrates the capabilities of CNNs in agricultural contexts and emphasizes the added value of optimization algorithms in improving model performance. The integration of GWO and SVM presents a significant advancement in plant seedling classification, offering a powerful tool for precision agriculture. Our findings hold great promise for enhancing crop management and yield in Africa and other emerging economies, contributing to the evolution of sustainable farming practices through innovative technological solutions.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1590/1678-4324-2024240177
dc.identifier.issn1516-8913
dc.identifier.issn1678-4324
dc.identifier.scopus2-s2.0-85203431855
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1590/1678-4324-2024240177
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42207
dc.identifier.volume67en_US
dc.identifier.wosWOS:001301055900001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherInst Tecnologia Paranaen_US
dc.relation.ispartofBrazilian Archives of Biology and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPlant Seedlingsen_US
dc.subjectClassificationen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectGrey Wolf Optimizationen_US
dc.subjectSupport Vector Machineen_US
dc.subjectDeep Learningen_US
dc.subjectPrecision Agricultureen_US
dc.subjectWeed Managementen_US
dc.titleIntegrating Deep Learning, Grey Wolf Optimization, and SVM for Precise Plant Seedling Classificationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files