Publication:
Detection of Pneumonia Disease Using Deep Learning in Chest X-Ray Dataset

dc.authorscopusid57250610000
dc.contributor.authorAltunay, Hakan Can
dc.date.accessioned2025-12-11T00:34:25Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Altunay] Hakan Can, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractEarly diagnosis is very important in pneumonia, which is frequently encountered in the world and sometimes leads to fatal results. Chest X-rays are often preferred in diagnosing pneumonia. Deep learning and machine learning algorithms, which are special usage models of artificial intelligence, have recently been frequently preferred in the detection of pneumonia. In this study, convolutional neural network (CNN), which is preferred in the field of image processing, was chosen for pneumonia diagnosis. The chest X-ray dataset shared with the public by the NIH Clinical Center was used. In the experimental study, the feature selection process was performed with CNN, while linear regression (LR), support vector machine (SVM), and decision tree (DT) were used in the classification phase. The values obtained by these classifiers were compared. As a result of the study, the highest value belongs to the SVM classifier with 96.4%. It was observed in this study that the CNN algorithm achieved high performance in the feature extraction process from image expressions. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.en_US
dc.identifier.doi10.1007/978-3-031-88999-8_8
dc.identifier.endpage103en_US
dc.identifier.isbn9783031282249
dc.identifier.isbn9783031344589
dc.identifier.isbn9783030298968
dc.identifier.isbn9783031766091
dc.identifier.isbn9783031531606
dc.identifier.isbn9783031530272
dc.identifier.isbn9783031565328
dc.identifier.isbn9783031347498
dc.identifier.isbn9783031601538
dc.identifier.isbn9783031076534
dc.identifier.issn2522-8595
dc.identifier.issn2522-8609
dc.identifier.scopus2-s2.0-105020243893
dc.identifier.scopusqualityQ3
dc.identifier.startpage93en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-88999-8_8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37593
dc.institutionauthorAltunay, Hakan Can
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofEAI/Springer Innovations in Communication and Computingen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChest X-Rayen_US
dc.subjectCNNen_US
dc.subjectDeep Learningen_US
dc.subjectPCAen_US
dc.subjectPneumoniaen_US
dc.subjectSVMen_US
dc.titleDetection of Pneumonia Disease Using Deep Learning in Chest X-Ray Dataseten_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files