Publication:
Fabrication and Mechanical Characterization of Rare Earth Permanent Magnet SmCo5Films

dc.authorscopusid56375163100
dc.authorscopusid9744522500
dc.authorscopusid49461649600
dc.authorscopusid24169541300
dc.contributor.authorKuru, M.
dc.contributor.authorŞahin, O.
dc.contributor.authorÖzarslan, S.
dc.contributor.authorOzmetin, A.E.
dc.date.accessioned2020-06-21T13:26:40Z
dc.date.available2020-06-21T13:26:40Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kuru] Mehmet, Department of Materials Science and Engineering, Erciyes Üniversitesi, Kayseri, Kayseri, Turkey, Department of Materials Science and Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şahin] Osman, Science and Art Faculty Micro/Nano mechanic Characterization Lab., Mustafa Kemal Üniversitesi, Antakya, Turkey; [Özarslan] Selma, Science and Art Faculty Micro/Nano mechanic Characterization Lab., Mustafa Kemal Üniversitesi, Antakya, Turkey; [Ozmetin] Ali Esad, College of Engineering, College Station, TX, United Statesen_US
dc.description.abstractThis study reports mechanical properties of rare earth permanent magnet (REPM) SmCo<inf>5</inf>thin films fabricated by RF magnetron sputtering technique. 1 μm thick SmCo<inf>5</inf>thin films were grown on Si (100) substrate at room temperature, and later they were annealed at 400 °C. Great care has been taken to decrease O<inf>2</inf>in the chamber throughout deposition. Mechanical and Structural properties of SmCo<inf>5</inf>thin films were researched using the nanoindentation and in situ scanning probe microscopy (SPM), Grazing Incident X-ray Diffraction (GIXRD) and Scanning Electron Microscopy (SEM) techniques. Nanoindentation-induced plasticity of SmCo<inf>5</inf>thin film was characterized by in situ SPM imaging of indented cross-sections. Nanoindentation results show load-displacement curves are continuous and smooth that there is no pile-up and sink-in behavior. Furthermore, both elastic modulus and nanohardness values of REPM SmCo<inf>5</inf>exhibit peak load dependence. Nanohardness increases with increasing indentation test load, while the reduced modulus decrease with increasing indentation test load. The obtained values of the intrinsic nanohardness and intrinsic reduced modulus are 3.47 ± 0.07 GPa and 43.09 ± 1.60 GPa, respectively. © 2016 Elsevier B.V.en_US
dc.identifier.doi10.1016/j.jallcom.2016.10.089
dc.identifier.endpage732en_US
dc.identifier.issn0925-8388
dc.identifier.scopus2-s2.0-84992073473
dc.identifier.scopusqualityQ1
dc.identifier.startpage726en_US
dc.identifier.urihttps://doi.org/10.1016/j.jallcom.2016.10.089
dc.identifier.volume694en_US
dc.identifier.wosWOS:000390622900095
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofJournal of Alloys and Compoundsen_US
dc.relation.journalJournal of Alloys and Compoundsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMechanical Propertiesen_US
dc.subjectNanoindentationen_US
dc.subjectSmCo5 Thin Filmen_US
dc.titleFabrication and Mechanical Characterization of Rare Earth Permanent Magnet SmCo5Filmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files