Publication:
The Utilization of a GR4J Model and Wavelet-Based Artificial Neural Network for Rainfall–Runoff Modelling

dc.authorscopusid57207685341
dc.authorscopusid14013469000
dc.contributor.authorSezen, C.
dc.contributor.authorPartal, Turgay
dc.date.accessioned2020-06-21T12:26:18Z
dc.date.available2020-06-21T12:26:18Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sezen] Cenk, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Partal] Turgay, Department of Civil Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractData-driven models and conceptual models have been utilized in an attempt to perform rainfall–runoff modelling. The aim of this study is comparing the performance of an artificial neural network (ANN) model, wavelet-based artificial neural network (WANN) model and GR4J lumped daily conceptual model for rainfall–runoff modelling of two rivers in the USA. It was obtained that the performance of the data-driven models (ANN, WANN) is better than the GR4J model especially when streamflow data the preceding day (Q<inf>t-1</inf>) and streamflow data the preceding two days (Q<inf>t-2</inf>) are used as input data in the ANN and WANN models for the simulation of low and high flows, in particular. On the other hand, when only precipitation and potential evapotranspiration data are used as input variables, the GR4J model performs better than the data-driven models. © IWA Publishing 2019.en_US
dc.identifier.doi10.2166/ws.2018.189
dc.identifier.endpage1304en_US
dc.identifier.isbn1843395908
dc.identifier.isbn9781843391883
dc.identifier.isbn1843395886
dc.identifier.isbn9781843396109
dc.identifier.isbn9781843396116
dc.identifier.isbn1843395894
dc.identifier.isbn9781843395881
dc.identifier.isbn1843395878
dc.identifier.isbn1843396106
dc.identifier.isbn9781843395874
dc.identifier.issn1606-9749
dc.identifier.issn1607-0798
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85067459807
dc.identifier.scopusqualityQ2
dc.identifier.startpage1295en_US
dc.identifier.urihttps://doi.org/10.2166/ws.2018.189
dc.identifier.volume19en_US
dc.identifier.wosWOS:000473771500002
dc.language.isoenen_US
dc.publisherIWA Publishing 12 Caxton Street London SW1H 0QSen_US
dc.relation.ispartofWater Science and Technology: Water Supplyen_US
dc.relation.journalWater Science and Technology-Water Supplyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectConceptualen_US
dc.subjectData-Drivenen_US
dc.subjectGR4Jen_US
dc.subjectStreamflowen_US
dc.subjectWaveleten_US
dc.titleThe Utilization of a GR4J Model and Wavelet-Based Artificial Neural Network for Rainfall–Runoff Modellingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files