Publication:
Fuzzy Lagged Variable Selection in Fuzzy Time Series with Genetic Algorithms

dc.authorscopusid23092915500
dc.authorscopusid24282075600
dc.authorscopusid23093703600
dc.authorscopusid55927757900
dc.contributor.authorAladag, C.H.
dc.contributor.authorYolcu, U.
dc.contributor.authorEgrioglu, E.
dc.contributor.authorBas, E.
dc.date.accessioned2020-06-21T13:56:50Z
dc.date.available2020-06-21T13:56:50Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag] Cagdas Hakan, Department of Statistics, Hacettepe Üniversitesi, Ankara, Turkey; [Yolcu] Ufuk, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Egrioglu] Erol, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Bas] Eren, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractFuzzy time series forecasting models can be divided into two subclasses which are first order and high order. In high order models, all lagged variables exist in the model according to the model order. Thus, some of these can exist in the model although these lagged variables are not significant in explaining fuzzy relationships. If such lagged variables can be removed from the model, fuzzy relationships will be defined better and it will cause more accurate forecasting results. In this study, a new fuzzy time series forecasting model has been proposed by defining a partial high order fuzzy time series forecasting model in which the selection of fuzzy lagged variables is done by using genetic algorithms. The proposed method is applied to some real life time series and obtained results are compared with those obtained from other methods available in the literature. It is shown that the proposed method has high forecasting accuracy. © 2014 Elsevier B.V.en_US
dc.identifier.doi10.1016/j.asoc.2014.03.028
dc.identifier.endpage473en_US
dc.identifier.issn1568-4946
dc.identifier.scopus2-s2.0-84903745219
dc.identifier.scopusqualityQ1
dc.identifier.startpage465en_US
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2014.03.028
dc.identifier.volume22en_US
dc.identifier.wosWOS:000338706600039
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofApplied Soft Computingen_US
dc.relation.journalApplied Soft Computingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectPartial High Order Modelen_US
dc.subjectVariable Selectionen_US
dc.titleFuzzy Lagged Variable Selection in Fuzzy Time Series with Genetic Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files