Publication:
Estimate Angle Information of Hand Open-Close From Surface Electromyogram (sEMG)

dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.contributor.authorTepe, Cengiz
dc.contributor.authorEminoglu, Ilyas
dc.contributor.authorSenyer, Nurettin
dc.date.accessioned2025-12-11T00:41:19Z
dc.date.issued2015
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Tepe, Cengiz; Eminoglu, Ilyas] Ondokuz Mayis Univ, Elekt & Elekt Muhendisligi Bolumu, Samsun, Turkey; [Senyer, Nurettin] Ondokuz Mayis Univ, Bilgisayar Muhendisligi Bolumu, Samsun, Turkeyen_US
dc.description.abstractIn this paper, an estimation of angle of hand opening-closing movenments by using the Artificial Neural Network (ANN) from surface electromyography (sEMG) signal is presented. The first step of this method is to record sEMG signal from the subject's right forearm and to acquired video frames of hand at the same time. The second step is to synchronize the beginning and the end of recorded video frame and obtain sEMG signals. The third step is to extract some most commonly used feature vectors for sEMG in the literature. Finally, feature vectors sets are fed to the ANN to estimate angle of hand movements. The obtained success rate of the ANN is given as 94.06% in the train set and 93.41% in the test set.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.isbn9781467373869
dc.identifier.issn2165-0608
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12712/38445
dc.identifier.wosWOS:000380500900002
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof23nd Signal Processing and Communications Applications Conference (SIU) -- May 16-19, 2015 -- Inonu Univ, Malatya, Turkeyen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSEMGen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectImage Processingen_US
dc.subjectEstimate Angle Information of Hand Openen_US
dc.titleEstimate Angle Information of Hand Open-Close From Surface Electromyogram (sEMG)en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files