Publication:
Investigating the Effect of PCA Dimension Reduction Technique in Classifying EMG Data

dc.authorscopusid59185584100
dc.authorscopusid56589621700
dc.authorscopusid22953804000
dc.contributor.authorKonuk, M.E.
dc.contributor.authorŞahin, D.Ö.
dc.contributor.authorKilic, E.
dc.date.accessioned2025-12-11T00:32:52Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Konuk] Mehmet Emin, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şahin] Durmuş Ozkan, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Bilgisayar Mühendisliǧi Bölümü, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThis study aims to classify different hand movements using electromyography (EMG) data. The dataset used in the study is an 8-class problem. A completely balanced data set consisting of 1000 samples from each class is classified with different machine learning algorithms. 5 different machine learning algorithms are used to classify the data: K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), Naive Bayes (NB) and Logistic Regression (LR). To increase the efficiency of classification algorithms, dimension reduction is performed with Principal Component Analysis (PCA). In this way, the data is classified by reducing the original data to fewer than 8 attributes. In the classification performed with only 4 components, the highest performance is obtained from RF algorithm with 98% according to accuracy and F-measure metric. This result shows that PCA has a significant effect in classifying EMG signals. © 2024 IEEE.en_US
dc.identifier.doi10.1109/HORA61326.2024.10550782
dc.identifier.isbn9798350394634
dc.identifier.scopus2-s2.0-85196734853
dc.identifier.urihttps://doi.org/10.1109/HORA61326.2024.10550782
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37258
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 6th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2024 -- 2024-05-23 through 2024-05-25 -- Istanbul -- 200165en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEMG Signal Classificationen_US
dc.subjectEMG Signal Processingen_US
dc.subjectPattern Classificationen_US
dc.subjectPattern Recognitionen_US
dc.subjectPrincipal Component Analysisen_US
dc.titleInvestigating the Effect of PCA Dimension Reduction Technique in Classifying EMG Dataen_US
dc.title.alternativeEmg Verilerinin Sınıflandırılmasında Pca Boyut İndirgeme Tekniğinin Etkisinin İncelenmesien_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files