Publication: New Fractal Simpson Estimates for Twice Local Differentiable Generalized Convex Mappings
| dc.authorscopusid | 55253111500 | |
| dc.authorscopusid | 59128762700 | |
| dc.authorscopusid | 57190940164 | |
| dc.authorwosid | Dokuyucu, Mustafa/Aal-9833-2021 | |
| dc.authorwosid | Butt, Saad/Itt-3431-2023 | |
| dc.contributor.author | Butt, S. I. | |
| dc.contributor.author | Inam, H. | |
| dc.contributor.author | Dokuyucu, M. A. | |
| dc.date.accessioned | 2025-12-11T00:42:37Z | |
| dc.date.issued | 2024 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Butt, S. I.] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Islamabad, Pakistan; [Inam, H.] Univ Calabria, Dept Informat Modeling Elect & Syst DIMES, ICT, Calabria, Italy; [Dokuyucu, M. A.] Ondokuz Mayis Univ, Dept Math, Samsun, Turkiye | en_US |
| dc.description.abstract | . The main focus of this research is to provide a new auxiliary results of the Simpson's notation for a local fractional function that is twice differentiable via extended-fractal integral operator. Using Ho<spacing diaeresis>lder-Yang's and Power-mean integral inequalities in conjunction with generalized convexity, we produce a series of new fractal Simpson's error estimates. Additionally, we will use improved Yang's inequalities to create new boundaries. Visual illustrations demonstrate the accuracy and supremacy of the offered technique. Applications to the c-type special, moment of random variables as well as wave-equations are given. In this work, we present an extension of previously published results. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.30546/1683-6154.23.4.2024.474 | |
| dc.identifier.endpage | 503 | en_US |
| dc.identifier.issn | 1683-3511 | |
| dc.identifier.issn | 1683-6154 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-85210821947 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 474 | en_US |
| dc.identifier.uri | https://doi.org/10.30546/1683-6154.23.4.2024.474 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/38648 | |
| dc.identifier.volume | 23 | en_US |
| dc.identifier.wos | WOS:001388508800004 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Ministry of Communications & High Technologies Republic Azerbaijan | en_US |
| dc.relation.ispartof | Applied and Computational Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Generalized Convexity | en_US |
| dc.subject | Simpson Type Inequalities | en_US |
| dc.subject | Fractal Sets | en_US |
| dc.subject | Fractional Operators | en_US |
| dc.subject | Hölder-Yang's Inequality | en_US |
| dc.title | New Fractal Simpson Estimates for Twice Local Differentiable Generalized Convex Mappings | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
