Publication: Mortez: Mobil Uygulama Destekli Ortez Sistemi Tasarımı
Abstract
Vücudumuzda meydana gelen kas-iskelet sistemi bozukluklarında veya yaralanmalarında kişilerin tedavi süreçlerini hızlandırmak için ortez kullanımının önemli olduğu bilinmektedir. Kullanım amaçlarına göre ortezler statik ve dinamik ortez olarak adlandırılmaktadır. Dinamik ortezlerde, temelde Elektromiyografi (EMG) sinyalleri kullanılarak kişilerin hareketleri algılanmaktadır. Ayrıca çeşitli sensörler de kullanılarak konum ve gerilim gibi verileri de ölçülmektedir. Yapılan hareketin doğru yorumlanması için EMG sinyallerinde bulunan gürültülerin minimuma düşürülmesi gerekmektedir. Bu tez çalışmasında ham EMG sinyallerinin gerçek zamanlı olarak Advanced RISC Machines (ARM) tabanlı bir mikrodenetleyici ile filtrelenmesi, filtrelenmiş çıkış sinyalin ve enkoder sensör bilgilerinin bluetooth modül kullanılarak taşınabilir aygıta aktarılması amaçlanmıştır. EMG sinyallerinin ve açı bilgisinin taşınabilir aygıt üzerinde okunması ve değerlendirilmesi için Mobil Uygulama Destekli Ortez (MORTEZ) uygulaması tasarlanmıştır. Ayrıca taşınabilir aygıta aktarılan EMG sinyallerin ve sensör bilgilerin MORTEZ uygulaması sayesinde kayıt altına alınabilmektedir. Ortez sistemlerinde yapılan hareketin doğru algılanabilmesi için kullanılan filtre türü, kesme frekansı ve derecesi önemlidir. Farklı dijital filtrelerin mikrodenetleyici üzerindeki performansları gerçek zamanlı olarak kıyaslanmış ve IIR filtrenin zaman bakımından çok daha kazançlı olduğu görülmüştür. Dijital sinyal işleme (DSP) kütüphanesinin mikrodenetleyiciye entegre edilmesi ile 8.derece 20-350 Hz bant geçiren IIR filtre kullanılmıştır. Mikrodenetleyici ve MATLAB programı kullanılarak elde edilen filtre çıkış sinyalleri karşılaştırılmış ve yüksek oranda doğruluk sağlanmıştır. STM32 için optimize edilmiş grafiksel kullanıcı arayüz programı olan TouchGFX ile dinamik görseller tasarlanmıştır. Mikrodenetleyici üzerinde elde edilen ham ve filtrelenmiş EMG sinyalleri ile enkoder açı bilgisi geliştirme kartında bulunan 4.3' LCD-TFT ekran üzerinde gösterilmektedir. Ayrıca mikrodenetleyicinin çevresel birimlerinin ayarlanması ve gerçek zamanlı yazılımın gerçekleştirilmesi STM32CubeIDE programı kullanılarak gerçekleştirilmiştir. Mikrodenetleyicinin çevresel birimlerinin kullanılması, geliştirme kartı üzerindeki ekranın sürülmesi ve tüm filtreleme hesaplamaları gerçek zamanlı bir işletim sistemi olan FreeRTOS ile sağlanmıştır. Mikrodenetleyici üzerinde gerçek zamanlı olarak tek kanallı EMG sinyalini okuyup filtreleyen, elde edilen tüm verileri kablosuz olarak taşınabilir aygıta aktarabilen, aynı zamanda MORTEZ uygulaması üzerinden verileri kaydedip görüntüleyebilen bir ortez sistemi önerilmiştir.
It is known that the use of orthoses is important in accelerating the treatment process in cases of musculoskeletal system disorders or injuries in the body. According to their use, orhtoses are called to as static and dynamic orthoses. In dynamic orthoses, movements of people are detected using Electromyography (EMG) signals. In addition, various sensors are used to measure data such as position and voltage. For the correct detection of the movement, it is necessary to minimize the noise in the EMG signals. In this thesis, the goal is to filter raw EMG signals in real-time using an ARM-based microcontroller, transfer the filtered output signal and encoder sensor information to a portable device using a bluetooth module. Mobile Application Supported Orthosis (MORTEZ) application has been designed for reading and evaluating EMG signals and angle information on a portable device. In addition, the EMG signals and sensor information transferred to the portable device can be recorded using the MORTEZ application.The filter type, cutoff frequency and degree used in orthotic systems are important for the correct detection of movement. In the selection of the filter to be used, the performances of the different filters on the microcontroller were compared in real-time and it was seen that the IIR filter was much more advantageous in terms of time. An 8th degree 20-350 Hz band-pass IIR filter was used with the integration of the DSP library into the microcontroller. The filter output signals obtained using the microcontroller and the MATLAB program were compared and a high level of accuracy was achieved. A dynamic graphics was designed using TouchGFX, a graphical user interface optimized for STM32. The raw and filtered EMG signals obtained on the microcontroller and the encoder angle information are displayed on the 4.3' LCD-TFT screen on the development board. The STM32CubeIDE program was also used to configure the microcontroller's peripherals and implement real-time operating system. Using the peripherals of the microcontroller, driving the screen on the development board and all filtering calculations are provided by a real-time operating system called FreeRTOS. An orthosis system that can read and filter the single-channel EMG signal in real-time on the microcontroller, transfer all obtained data wirelessly to a portable device, and record and display data through the MORTEZ application has been suggested.
It is known that the use of orthoses is important in accelerating the treatment process in cases of musculoskeletal system disorders or injuries in the body. According to their use, orhtoses are called to as static and dynamic orthoses. In dynamic orthoses, movements of people are detected using Electromyography (EMG) signals. In addition, various sensors are used to measure data such as position and voltage. For the correct detection of the movement, it is necessary to minimize the noise in the EMG signals. In this thesis, the goal is to filter raw EMG signals in real-time using an ARM-based microcontroller, transfer the filtered output signal and encoder sensor information to a portable device using a bluetooth module. Mobile Application Supported Orthosis (MORTEZ) application has been designed for reading and evaluating EMG signals and angle information on a portable device. In addition, the EMG signals and sensor information transferred to the portable device can be recorded using the MORTEZ application.The filter type, cutoff frequency and degree used in orthotic systems are important for the correct detection of movement. In the selection of the filter to be used, the performances of the different filters on the microcontroller were compared in real-time and it was seen that the IIR filter was much more advantageous in terms of time. An 8th degree 20-350 Hz band-pass IIR filter was used with the integration of the DSP library into the microcontroller. The filter output signals obtained using the microcontroller and the MATLAB program were compared and a high level of accuracy was achieved. A dynamic graphics was designed using TouchGFX, a graphical user interface optimized for STM32. The raw and filtered EMG signals obtained on the microcontroller and the encoder angle information are displayed on the 4.3' LCD-TFT screen on the development board. The STM32CubeIDE program was also used to configure the microcontroller's peripherals and implement real-time operating system. Using the peripherals of the microcontroller, driving the screen on the development board and all filtering calculations are provided by a real-time operating system called FreeRTOS. An orthosis system that can read and filter the single-channel EMG signal in real-time on the microcontroller, transfer all obtained data wirelessly to a portable device, and record and display data through the MORTEZ application has been suggested.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
56
