Publication:
Comparative Study of LQR, LQG and PI Controller Based on Genetic Algorithm Optimization for Buck Converters

dc.authorwosidAlmaged, Mohammed/G-1795-2019
dc.authorwosidKhather, Salam/G-7795-2019
dc.contributor.authorAlmaged, Mohammed
dc.contributor.authorKhather, Salam Ibrahim
dc.contributor.authorAbdulla, Abdulla I.
dc.contributor.authorAmjed, Mohammed Raed
dc.contributor.authorIDAlmaged, Mohammed/0000-0003-3060-9266
dc.contributor.authorIDKhather, Salam/0000-0002-9082-2360
dc.date.accessioned2025-12-11T01:18:50Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Almaged, Mohammed; Khather, Salam Ibrahim; Abdulla, Abdulla I.] Ninevah Univ, Syst & Control Engn Dept, Coll Elect Engn, Mosul, Iraq; [Amjed, Mohammed Raed] Ondokuz Mayis Univ, Dept Nanosci & Nanotechnol, Fac Engn, Samsun, Turkeyen_US
dc.descriptionAlmaged, Mohammed/0000-0003-3060-9266; Khather, Salam/0000-0002-9082-2360en_US
dc.description.abstractThis paper describes the design procedure of LQR, LQG and PI controller for a buck power converter circuit. Initially, Genetic algorithm (GA) is implemented to determine an optimal value for the feedback gain matrix and Kalman filter estimator gain of the LQR and LQG controllers respectively. LQR control approach is usually implemented when all the state variables of the system are readily available and the system measurements are noise free. However, sometimes, it is not possible to estimate all the states of the system besides neither the measurement nor the process are free of noises. Therefore, Linear Quadratic Gaussian (LQG) control technique is introduced that is basically an LQR, which is the groundwork of the LQG, with a Kalman filter estimator. The estimation analysis confirms the performance of the designed LQG controller. Simulation results showed that the Kalman filter has succeeded in producing an appropriate estimation in spite of noises presence. Finally, a comparison was made between LQG and PI controllers. It has shown that LQG controller is capable of obtaining the best transient response in term of settling time and peak overshot values as it combines the advantages of both LQR and PI controllers.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.doi10.23919/eleco47770.2019.8990572
dc.identifier.endpage1017en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage1012en_US
dc.identifier.urihttps://doi.org/10.23919/eleco47770.2019.8990572
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42773
dc.identifier.wosWOS:000552654100204
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof11th International Conference on Electrical and Electronics Engineering (ELECO) -- Nov 28-30, 2019 -- Bursa, Turkeyen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLQRen_US
dc.subjectLQGen_US
dc.subjectPI Controlleren_US
dc.subjectKalman Filteren_US
dc.subjectGenetic Algorithm (GA)en_US
dc.titleComparative Study of LQR, LQG and PI Controller Based on Genetic Algorithm Optimization for Buck Convertersen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files