Publication:
Artificial Neural Network Assisted Multi-Objective Optimization of a Methane-Fed DIR-SOFC System with Waste Heat Recovery

dc.authorscopusid58619894400
dc.authorscopusid6506464375
dc.authorscopusid8274885500
dc.authorscopusid58620408300
dc.authorwosidDoğan, Bekir/Lkj-8836-2024
dc.authorwosidDogan, Bekir/Lkj-8836-2024
dc.authorwosidÖzbey, Mustafa/Hjp-5771-2023
dc.authorwosidNamli, Lutfu/Hjy-6024-2023
dc.authorwosidAybek, Unsal/Jed-6704-2023
dc.contributor.authorAybek, Unsal
dc.contributor.authorNamli, Lutfu
dc.contributor.authorOzbey, Mustafa
dc.contributor.authorDogan, Bekir
dc.contributor.authorIDDoğan, Bekir/0000-0002-8986-7174
dc.contributor.authorIDNamli, Lütfü/0000-0001-9758-0889
dc.date.accessioned2025-12-11T01:20:02Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aybek, Unsal; Dogan, Bekir] Tokat Gaziosmanpasa Univ, Tokat Vocat Sch, Tokat, Turkiye; [Namli, Lutfu; Ozbey, Mustafa] Ondokuz Mayis Univ, Fac Engn, Samsun, Turkiyeen_US
dc.descriptionDoğan, Bekir/0000-0002-8986-7174; Namli, Lütfü/0000-0001-9758-0889;en_US
dc.description.abstractThe main purpose of this study is to enhance the performance of solid oxide fuel cell systems. For this purpose, a mathematical model of a direct internal reforming (DIR) methane-fed solid oxide fuel cell system with waste heat recovery was designed in the engineering equation solver program. We optimised the performance of the solid oxide fuel cell using a genetic algorithm and TOPSIS technique considering exergy, power, and environmental analyzes. An ANN working with the Levenberg-Marquardt training function was designed in the MATLAB program to create the decision matrix to which the TOPSIS method will be applied. According to the power optimization, 786 kW net power was obtained from the system. In exergetic optimization, the exergy efficiency was found to be 57.6%. In environmental optimization, the environmental impact was determined as 330.6 kgCO(2)/MWh. According to the multi-objective optimization results, the exergy efficiency, the net power of the solid oxide fuel cell system, and the environmental impact were 504.1 kW, 40.08%, and 475.4 kgCO(2)/MWh.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.2298/TSCI2304413A
dc.identifier.endpage3422en_US
dc.identifier.issn0354-9836
dc.identifier.issn2334-7163
dc.identifier.scopus2-s2.0-85172325769
dc.identifier.scopusqualityQ3
dc.identifier.startpage3413en_US
dc.identifier.urihttps://doi.org/10.2298/TSCI2304413A
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42946
dc.identifier.volume27en_US
dc.identifier.wosWOS:001108597100037
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherVinca Inst Nuclear Scien_US
dc.relation.ispartofThermal Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnnen_US
dc.subjectClean Energyen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectMulti-Objective Optimizationen_US
dc.subjectSolid Oxide Fuel Cellen_US
dc.titleArtificial Neural Network Assisted Multi-Objective Optimization of a Methane-Fed DIR-SOFC System with Waste Heat Recoveryen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files