Publication: Devirli ve Sabit Devirli Kodlardan Elde Edilen Kuantum Kodlar Hakkında
Abstract
Dört bölümden oluşan bu tez çalışmasının amacı; u^2=u, v^2=v, w^2=w, uv=vu, uw=wu=vw=wv=0, q=p^m, m pozitif tam sayı ve p tek asal olmak üzere H=F_q+uF_q+vF_q+wF_q+uvF_q sonlu halka ailesi üzerinde lineer kodların önemli bir sınıfı olan devirli ve sabit devirli kodlar kullanılarak hata düzelten kuantum kodların parametrelerini elde etmektir. Tezin birinci bölümünde, kodlama teorisi, kuantum bilgisayarları ve kuantum kodları ile ilgili literatür bilgisi verilmiştir. Tezin ikinci bölümünde, cebir, kodlama teorisi ve kuantum kodlar ile ilgili temel tanım, teorem ve sonuçlar verilmiştir. Tezin üçüncü bölümünde, H=F_q+uF_q+vF_q+wF_q+uvF_q sonlu ve değişmeli halka ailesinin özellikleri çalışılmış ve bu H halkası üzerinde devirli kodlar, (1-2w-2uv)-sabit devirli kodlar ve (λ_1+uλ_2+vλ_3+wλ_4+uvλ_5 )-sabit devirli kodların özellikleri incelenmiştir. Ayrıca bu kodların, dualini içerme özelliği kullanılarak hata düzelten kuantum kodların parametreleri elde edilmiştir. Tezin son bölümünde ise sonuç ve önerilere yer verilmiştir.
The aim of this thesis consisting four parts is to obtain the parameters of the quantum error correcting codes by using cyclic and constacyclic codes, which are an important class of linear codes over the family of finite ring H=F_q+uF_q+vF_q+wF_q+uvF_q, where u^2=u, v^2=v, w^2=w, uv=vu, uw=wu=vw=wv=0, q=p^m, m is a positive integer and p is an odd prime. In the first part of the thesis, a literature survey about the coding theory, quantum computers and quantum codes is given. In the second part of the thesis, some basic definitions, theorems and results about algebra, coding theory and quantum codes are given. In the third part of the thesis, the properties of the family of finite and commutative ring H=F_q+uF_q+vF_q+wF_q+uvF_q are studied and the properties of cyclic codes, (1-2w-2uv)-constacyclic codes and (λ_1+uλ_2+vλ_3+wλ_4+uvλ_5 )-constacyclic codes over the ring H are examined. Also, the parameters of the quantum error correcting codes by using the containing their dual properties are obtained. In the last part of the thesis, the conclusion and recommendations are given.
The aim of this thesis consisting four parts is to obtain the parameters of the quantum error correcting codes by using cyclic and constacyclic codes, which are an important class of linear codes over the family of finite ring H=F_q+uF_q+vF_q+wF_q+uvF_q, where u^2=u, v^2=v, w^2=w, uv=vu, uw=wu=vw=wv=0, q=p^m, m is a positive integer and p is an odd prime. In the first part of the thesis, a literature survey about the coding theory, quantum computers and quantum codes is given. In the second part of the thesis, some basic definitions, theorems and results about algebra, coding theory and quantum codes are given. In the third part of the thesis, the properties of the family of finite and commutative ring H=F_q+uF_q+vF_q+wF_q+uvF_q are studied and the properties of cyclic codes, (1-2w-2uv)-constacyclic codes and (λ_1+uλ_2+vλ_3+wλ_4+uvλ_5 )-constacyclic codes over the ring H are examined. Also, the parameters of the quantum error correcting codes by using the containing their dual properties are obtained. In the last part of the thesis, the conclusion and recommendations are given.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
59
