Publication:
A Class of Numerical Algorithms Based on Cubic Trigonometric B-Spline Functions for Numerical Simulation of Nonlinear Parabolic Problems

dc.authorscopusid35194081300
dc.authorscopusid54682190300
dc.authorscopusid10639356300
dc.contributor.authorJiwari, R.
dc.contributor.authorPandit, S.
dc.contributor.authorKoksal, Mehmet Emir
dc.date.accessioned2020-06-21T12:26:08Z
dc.date.available2020-06-21T12:26:08Z
dc.date.issued2019
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Jiwari] Ram, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, UK, India; [Pandit] Sapna, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, UK, India; [Koksal] Mehmet Emir, Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this work, the authors developed two new B-spline collocation algorithms based on cubic trigonometric B-spline functions to find approximate solutions of nonlinear parabolic partial differential equations (PDEs) with Dirichlet and Neumann boundary conditions. In the first algorithm, cubic trigonometric B-spline functions are directly used for approximate solutions of parabolic PDEs with Neumann boundary conditions. But, the Dirichlet boundary conditions cannot be handled directly by cubic trigonometric B-spline functions. Then, a modification is made in cubic trigonometric B-spline functions to handle the Dirichlet boundary conditions and the second algorithm is developed with the help of modified cubic trigonometric B-spline functions. The proposed algorithms reduced the parabolic problem into a system of first-order nonlinear ordinary differential equations (ODEs) in time variable. Then, strong stability-preserving-Runge–Kutta3 (SSP-RK3) scheme is used to solve the obtained system. Some well-known parabolic problems are solved to check the accuracy and efficiency of the proposed algorithms. The algorithms can be extended to solve multidimensional problems arising as model equations in physical, chemical and biophysical phenomenon. © 2019, SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional.en_US
dc.identifier.doi10.1007/s40314-019-0918-1
dc.identifier.issn2238-3603
dc.identifier.issn1807-0302
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85068163546
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s40314-019-0918-1
dc.identifier.volume38en_US
dc.identifier.wosWOS:000473203700001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media, LLCen_US
dc.relation.ispartofComputational & Applied Mathematicsen_US
dc.relation.journalComputational & Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCubic Trigonometric B-Splines Basis Functionsen_US
dc.subjectModified Cubic Trigonometric B-Splines Basis Functionsen_US
dc.subjectNonlinear Parabolic Partial Differential Equationsen_US
dc.subjectSSP-RK3 Schemeen_US
dc.subjectThomas Algorithmen_US
dc.titleA Class of Numerical Algorithms Based on Cubic Trigonometric B-Spline Functions for Numerical Simulation of Nonlinear Parabolic Problemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files