Publication:
A New Classification for Power Quality Events in Distribution Systems

dc.authorscopusid22433630600
dc.authorscopusid36460206000
dc.authorscopusid26025602500
dc.authorscopusid35409580000
dc.contributor.authorÖzgönenel, O.
dc.contributor.authorYalcin, T.
dc.contributor.authorGüney, I.
dc.contributor.authorKurt, U.
dc.date.accessioned2020-06-21T14:16:27Z
dc.date.available2020-06-21T14:16:27Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Özgönenel] Okan, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Yalcin] Turgay, Electrical and Electronics Engineering Department, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Güney] Irfan, Engineering Faculty, Acıbadem Mehmet Ali Aydınlar Üniversitesi, Istanbul, Turkey; [Kurt] Ünal, Electric and Electronic Engineering /Technology Faculty, Amasya Üniversitesi, Amasya, Turkeyen_US
dc.description.abstractThis paper presents the performance evaluation of support vector machine (SVM) with one against all (OAA) and different classification methods for power quality monitoring. The first aim of this study is to investigate EEMD (ensemble empirical mode decomposition) performance and to compare it with classical EMD (empirical mode decomposition) for feature vector extraction and selection of power quality disturbances. Feature vectors are extracted from the sampled power signals with the Hilbert Huang Transform (HHT) technique. HHT is a combination of EEMD and Hilbert transform (HT). The outputs of HHT are intrinsic mode functions (IMFs), instantaneous frequency (IF), and instantaneous amplitude (IA). Characteristic features are obtained from first IMFs, IF, and IA. The ten features - i.e., the mean, standard deviation, singular values, maxima and minima - of both IF and IA are then calculated. These features are normalized along with the inputs of SVM and other classifiers. © 2012 Elsevier B.V. All rights reserved.en_US
dc.identifier.doi10.1016/j.epsr.2012.09.007
dc.identifier.endpage199en_US
dc.identifier.issn0378-7796
dc.identifier.scopus2-s2.0-84867422142
dc.identifier.scopusqualityQ1
dc.identifier.startpage192en_US
dc.identifier.urihttps://doi.org/10.1016/j.epsr.2012.09.007
dc.identifier.volume95en_US
dc.identifier.wosWOS:000313598100023
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevier Science SAen_US
dc.relation.ispartofElectric Power Systems Researchen_US
dc.relation.journalElectric Power Systems Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnsemble Empirical Mode Decompositionen_US
dc.subjectHilbert Huang Transformen_US
dc.subjectOne-Against-All Methoden_US
dc.subjectPower Quality Disturbancesen_US
dc.subjectSupport Vector Machinesen_US
dc.titleA New Classification for Power Quality Events in Distribution Systemsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files