Publication:
Bayesian Robust Symmetric Regression for Medical Data with Heavy-Tailed Errors and Censoring

dc.authorscopusid12766595200
dc.authorscopusid36126813200
dc.authorscopusid60032285400
dc.authorwosidŞenel, Talat/Nys-9905-2025
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidKara, Muhammed/Oye-4901-2025
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorSenel, Talat
dc.contributor.authorKara, Muhammed
dc.date.accessioned2025-12-11T00:46:49Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Cengiz, Mehmet Ali] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia; [Senel, Talat] Ondokuz Mayis Univ, Fac Sci, Dept Stat, Samsun, Turkiye; [Kara, Muhammed] Ondokuz Mayis Univ, Fac Educ, Dept Educ Sci, Samsun, Turkiyeen_US
dc.description.abstractBayesian symmetric regression offers a principled framework for modeling data characterized by heavy-tailed errors and censoring, both of which are frequently encountered in medical research. Classical regression methods often yield unreliable results in the presence of outliers or incomplete observations, as commonly seen in clinical and survival data. To address these limitations, we develop a robust Bayesian regression model that incorporates symmetric error distributions such as the Student-t and Cauchy, providing improved resistance to extreme values. The model also explicitly accounts for both right and left censoring through its likelihood structure. Inference is performed using Markov Chain Monte Carlo (MCMC), allowing for accurate estimation of uncertainty. The proposed approach is validated through simulation studies and two real-world medical applications: lung cancer survival analysis and hospital stay duration modeling. Results indicate that the model consistently outperforms traditional methods when dealing with noisy, censored, and non-Gaussian data, highlighting its potential for broad use in medical statistics and health outcome research.en_US
dc.description.sponsorshipDeanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) [IMSIU-DDRSP2501]en_US
dc.description.sponsorshipThis work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2501).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1371/journal.pone.0329589
dc.identifier.issn1932-6203
dc.identifier.issue8en_US
dc.identifier.pmid40748943
dc.identifier.scopus2-s2.0-105012734381
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0329589
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39169
dc.identifier.volume20en_US
dc.identifier.wosWOS:001542575500008
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherPublic Library Scienceen_US
dc.relation.ispartofPLOS ONEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleBayesian Robust Symmetric Regression for Medical Data with Heavy-Tailed Errors and Censoringen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files