Publication:
Artificial Neural Network Approach for the Prediction of the Corn (Zea Mays L.) Leaf Area

dc.authorscopusid21743556600
dc.authorscopusid24474284100
dc.authorscopusid35099041700
dc.contributor.authorOdabaş, M.S.
dc.contributor.authorErgün, E.
dc.contributor.authorÖner, F.
dc.date.accessioned2025-12-10T22:30:51Z
dc.date.issued2013
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Odabaş] Mehmet Serhat, Vocational High School of Bafra, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Ergün] Erhan, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Öner] Fatih, Department of Field Crops, Ordu Üniversitesi, Ordu, Turkeyen_US
dc.description.abstractThis research investigates the artificial neural networks utilization in improving leaf area forecasting at corn leaves (Zea mays L.). Best fitting results were obtained with 2 input nodes (leaf length and leaf width), 2 hidden layers and one output (leaf area). Artificial neural network model performance was tested successfully to describe the relationship between actual leaf area and predicted leaf area. R2 of leaf area was 0.98. Artificial neural networks model produced satisfied correlation between measured and predicted value and minimum inspection error.en_US
dc.identifier.endpage769en_US
dc.identifier.issn1310-0351
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84893804369
dc.identifier.scopusqualityQ3
dc.identifier.startpage766en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12712/35170
dc.identifier.volume19en_US
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.relation.ispartofBulgarian Journal of Agricultural Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectCornen_US
dc.subjectLeaf Areaen_US
dc.subjectModelingen_US
dc.subjectZea Mays Len_US
dc.titleArtificial Neural Network Approach for the Prediction of the Corn (Zea Mays L.) Leaf Areaen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files