Publication:
Alternative Expectation Approaches for Expectation-Maximization Missing Data Imputations in Cox Regression

dc.authorscopusid57194769905
dc.authorscopusid57403788400
dc.authorscopusid12766595200
dc.authorscopusid16508006000
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidTerzi, Yuksel/Ach-3000-2022
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.contributor.authorSaglam, Fatih
dc.contributor.authorSanli, Tuba
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorTerzi, Yuksel
dc.contributor.authorIDSağlam, Fatih/0000-0002-2084-2008
dc.date.accessioned2025-12-11T01:08:35Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih; Cengiz, Mehmet Ali; Terzi, Yuksel] Ondokuz Mayis Univ, Fac Art & Sci, Dept Stat, Samsun, Turkey; [Sanli, Tuba] Giresun Univ, Dept Finance & Banking, Sch Appl Sci, Giresun, Turkeyen_US
dc.descriptionSağlam, Fatih/0000-0002-2084-2008;en_US
dc.description.abstractMissing data is common in survival analysis. It is either removed or imputed using various methods. Expectation-maximization (EM) imputation is a popular method in Cox regression studies. This paper investigated the effect of different regression methods on Cox regression modeling within the framework of EM. A stratified Cox regression model was derived from a dataset of categorical and numerical variables. Missing data were imputed using the EM framework with five machine learning algorithms and then were compared to the full model. The results show that the recursive partition and regression tree (RPART) method performed better than others. However, all regression methods performed poorly in categorical covariate imputation. R code is available online.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1080/03610918.2021.2024851
dc.identifier.endpage5974en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85122483196
dc.identifier.scopusqualityQ3
dc.identifier.startpage5966en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2021.2024851
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41580
dc.identifier.volume52en_US
dc.identifier.wosWOS:000740098800001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCox Regressionen_US
dc.subjectExpectation-Maximizationen_US
dc.subjectMachine Learningen_US
dc.subjectMissing Dataen_US
dc.titleAlternative Expectation Approaches for Expectation-Maximization Missing Data Imputations in Cox Regressionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files