Publication: Alternative Expectation Approaches for Expectation-Maximization Missing Data Imputations in Cox Regression
| dc.authorscopusid | 57194769905 | |
| dc.authorscopusid | 57403788400 | |
| dc.authorscopusid | 12766595200 | |
| dc.authorscopusid | 16508006000 | |
| dc.authorwosid | Cengiz, Mehmet/Agz-9391-2022 | |
| dc.authorwosid | Terzi, Yuksel/Ach-3000-2022 | |
| dc.authorwosid | Sağlam, Fatih/Aaa-4146-2022 | |
| dc.contributor.author | Saglam, Fatih | |
| dc.contributor.author | Sanli, Tuba | |
| dc.contributor.author | Cengiz, Mehmet Ali | |
| dc.contributor.author | Terzi, Yuksel | |
| dc.contributor.authorID | Sağlam, Fatih/0000-0002-2084-2008 | |
| dc.date.accessioned | 2025-12-11T01:08:35Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Saglam, Fatih; Cengiz, Mehmet Ali; Terzi, Yuksel] Ondokuz Mayis Univ, Fac Art & Sci, Dept Stat, Samsun, Turkey; [Sanli, Tuba] Giresun Univ, Dept Finance & Banking, Sch Appl Sci, Giresun, Turkey | en_US |
| dc.description | Sağlam, Fatih/0000-0002-2084-2008; | en_US |
| dc.description.abstract | Missing data is common in survival analysis. It is either removed or imputed using various methods. Expectation-maximization (EM) imputation is a popular method in Cox regression studies. This paper investigated the effect of different regression methods on Cox regression modeling within the framework of EM. A stratified Cox regression model was derived from a dataset of categorical and numerical variables. Missing data were imputed using the EM framework with five machine learning algorithms and then were compared to the full model. The results show that the recursive partition and regression tree (RPART) method performed better than others. However, all regression methods performed poorly in categorical covariate imputation. R code is available online. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1080/03610918.2021.2024851 | |
| dc.identifier.endpage | 5974 | en_US |
| dc.identifier.issn | 0361-0918 | |
| dc.identifier.issn | 1532-4141 | |
| dc.identifier.issue | 12 | en_US |
| dc.identifier.scopus | 2-s2.0-85122483196 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 5966 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/03610918.2021.2024851 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/41580 | |
| dc.identifier.volume | 52 | en_US |
| dc.identifier.wos | WOS:000740098800001 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Inc | en_US |
| dc.relation.ispartof | Communications in Statistics-Simulation and Computation | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Cox Regression | en_US |
| dc.subject | Expectation-Maximization | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Missing Data | en_US |
| dc.title | Alternative Expectation Approaches for Expectation-Maximization Missing Data Imputations in Cox Regression | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
