Publication:
Machine Learning-Assisted Near- and Mid-Infrared Spectroscopy for Rapid Discrimination of Wild and Farmed Mediterranean Mussels (Mytilus galloprovincialis)

dc.authorscopusid54792612800
dc.authorscopusid55389584500
dc.authorscopusid57372837700
dc.authorscopusid58722738000
dc.authorscopusid57217136321
dc.authorscopusid57191202269
dc.authorscopusid58723792900
dc.authorwosidGunes, Nurhan/A-2830-2016
dc.authorwosidAyvaz, Zayde/E-4827-2012
dc.authorwosidMenevseoglu, Ahmed/Aaa-1336-2021
dc.authorwosidDogan, Muhammed/Ool-3721-2025
dc.authorwosidGunes, Nurhan/A-2830-2016
dc.authorwosidKaya, Burcu/Aaq-6872-2021
dc.authorwosidTemizkan, Riza/H-8794-2019
dc.contributor.authorAyvaz, Huseyin
dc.contributor.authorTemizkan, Riza
dc.contributor.authorKaya, Burcu
dc.contributor.authorSalman, Merve
dc.contributor.authorMenevseoglu, Ahmed
dc.contributor.authorAyvaz, Zayde
dc.contributor.authorMortas, Mustafa
dc.contributor.authorIDAyvaz, Zayde/0000-0002-8102-0577
dc.contributor.authorIDMortas, Mustafa/0000-0002-0316-7768
dc.contributor.authorIDGunes, Nurhan/0000-0003-4163-8679
dc.contributor.authorIDMenevseoglu, Ahmed/0000-0003-2454-7898
dc.contributor.authorIDAyvaz, Huseyin/0000-0001-9705-6921
dc.contributor.authorIDDogan, Muhammed Ali/0000-0002-5524-7567
dc.date.accessioned2025-12-11T01:37:45Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ayvaz, Huseyin; Temizkan, Riza; Kaya, Burcu; Salman, Merve; Dogan, Muhammed Ali] Canakkale Onsekiz Mart Univ, Dept Food Engn, Fac Engn, TR-17100 Canakkale, Turkiye; [Menevseoglu, Ahmed] Agri Ibrahim Cecen Univ, Sch Tourism & Hotel Management, Dept Gastron & Culinary Arts, TR-04100 Agri, Turkiye; [Ayvaz, Zayde] Canakkale Onsekiz Mart Univ, Fac Marine Sci & Technol, Dept Marine Technol Engn, TR-17100 Canakkale, Turkiye; [Gunes, Nurhan] Sivas Univ Sci & Technol, Fac Engn, Dept Elect Elect Engn, TR-58100 Sivas, Turkiye; [Mortas, Mustafa] Ondokuz Mayis Univ, Fac Engn, Food Engn Dept, TR-55139 Samsun, Turkiyeen_US
dc.descriptionAyvaz, Zayde/0000-0002-8102-0577; Mortas, Mustafa/0000-0002-0316-7768; Gunes, Nurhan/0000-0003-4163-8679; Menevseoglu, Ahmed/0000-0003-2454-7898; Ayvaz, Huseyin/0000-0001-9705-6921; Dogan, Muhammed Ali/0000-0002-5524-7567en_US
dc.description.abstractThe objective of this study was to investigate the ability to discriminate between wild and farmed Mediterranean mussels (Mytilus galloprovincialis) using machine learning-assisted near-infrared (NIR) and mid-infrared (MIR) spectroscopy. Mussels are of significant global importance in aquaculture due to their nutritional characteristics, encompassing a rich source of protein, essential fatty acids, various vitamins, and abundant minerals. Additionally, their ease of farming adds to their value as a desirable aquaculture species. The mussels' capacity to reflect environmental quality attributes makes them valuable as biomonitoring agents. However, differences in nutritional composition may arise between wild mussels harvested from natural marine hard-bottoms and those farmed in open artificial systems in the sea. In this study aimed at distinguishing between the two types of mussels, the classification models were created, and the most accurate results were achieved using the FT-MIR spectral data extracted from the interior part of the mussels, while the performance of FT-MIR data obtained from the mussels' shells was slightly lower, with the accuracy of 92% and R2 of 0.87. Still, the accuracies of all the classification models were over 90%. The Ensemble model, trained using FT-MIR spectra from the interior part of the mussel, achieved an accuracy of 98.4%, surpassing the performance of other variable sets. In both NIR and MIR models, spectra from the mussels' interior provide better discrimination than spectra from the outer shell.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.microc.2023.109669
dc.identifier.issn0026-265X
dc.identifier.issn1095-9149
dc.identifier.scopus2-s2.0-85177858688
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.microc.2023.109669
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45001
dc.identifier.volume196en_US
dc.identifier.wosWOS:001121407600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofMicrochemical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChemometricsen_US
dc.subjectDiscriminationen_US
dc.subjectInfrared Spectroscopyen_US
dc.subjectMachine Learningen_US
dc.subjectMusselsen_US
dc.titleMachine Learning-Assisted Near- and Mid-Infrared Spectroscopy for Rapid Discrimination of Wild and Farmed Mediterranean Mussels (Mytilus galloprovincialis)en_US
dc.typeArticleen_US
dspace.entity.typePublication

Files