Publication: Stochastic Analysis of Covariance When the Error Distribution Is Long-Tailed Symmetric
| dc.authorscopusid | 54581049600 | |
| dc.authorscopusid | 6506973358 | |
| dc.authorscopusid | 7006832860 | |
| dc.contributor.author | Kasap, P. | |
| dc.contributor.author | Şenoǧlu, B. | |
| dc.contributor.author | Arslan, O. | |
| dc.date.accessioned | 2020-06-21T13:39:53Z | |
| dc.date.available | 2020-06-21T13:39:53Z | |
| dc.date.issued | 2016 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Kasap] Pelin, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şenoǧlu] Birdal, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey; [Arslan] Olcay, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey | en_US |
| dc.description.abstract | In this study, we consider stochastic one-way analysis of covariance model when the distribution of the error terms is long-tailed symmetric. Estimators of the unknown model parameters are obtained by using the maximum likelihood (ML) methodology. Iteratively reweighting algorithm is used to compute the ML estimates of the parameters. We also propose new test statistic based on ML estimators for testing the linear contrasts of the treatment effects. In the simulation study, we compare the efficiencies of the traditional least-squares (LS) estimators of the model parameters with the corresponding ML estimators. We also compare the power of the test statistics based on LS and ML estimators, respectively. A real-life example is given at the end of the study. © 2015 Taylor & Francis. | en_US |
| dc.identifier.doi | 10.1080/02664763.2015.1125866 | |
| dc.identifier.endpage | 1997 | en_US |
| dc.identifier.issn | 0266-4763 | |
| dc.identifier.issn | 1360-0532 | |
| dc.identifier.issue | 11 | en_US |
| dc.identifier.scopus | 2-s2.0-84952643636 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 1977 | en_US |
| dc.identifier.uri | https://doi.org/10.1080/02664763.2015.1125866 | |
| dc.identifier.volume | 43 | en_US |
| dc.identifier.wos | WOS:000382570500002 | |
| dc.identifier.wosquality | Q3 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor and Francis Ltd. michael.wagreich@univie.ac.at | en_US |
| dc.relation.ispartof | Journal of Applied Statistics | en_US |
| dc.relation.journal | Journal of Applied Statistics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | ANCOVA | en_US |
| dc.subject | Iteratively Reweighting Algorithm | en_US |
| dc.subject | Long-Tailed Symmetric | en_US |
| dc.subject | Robustness | en_US |
| dc.subject | Stochastic Covariate | en_US |
| dc.title | Stochastic Analysis of Covariance When the Error Distribution Is Long-Tailed Symmetric | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
