Publication:
Stochastic Analysis of Covariance When the Error Distribution Is Long-Tailed Symmetric

dc.authorscopusid54581049600
dc.authorscopusid6506973358
dc.authorscopusid7006832860
dc.contributor.authorKasap, P.
dc.contributor.authorŞenoǧlu, B.
dc.contributor.authorArslan, O.
dc.date.accessioned2020-06-21T13:39:53Z
dc.date.available2020-06-21T13:39:53Z
dc.date.issued2016
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kasap] Pelin, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Şenoǧlu] Birdal, Department of Statistics, Ankara Üniversitesi, Ankara, Turkey; [Arslan] Olcay, Department of Statistics, Ankara Üniversitesi, Ankara, Turkeyen_US
dc.description.abstractIn this study, we consider stochastic one-way analysis of covariance model when the distribution of the error terms is long-tailed symmetric. Estimators of the unknown model parameters are obtained by using the maximum likelihood (ML) methodology. Iteratively reweighting algorithm is used to compute the ML estimates of the parameters. We also propose new test statistic based on ML estimators for testing the linear contrasts of the treatment effects. In the simulation study, we compare the efficiencies of the traditional least-squares (LS) estimators of the model parameters with the corresponding ML estimators. We also compare the power of the test statistics based on LS and ML estimators, respectively. A real-life example is given at the end of the study. © 2015 Taylor & Francis.en_US
dc.identifier.doi10.1080/02664763.2015.1125866
dc.identifier.endpage1997en_US
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-84952643636
dc.identifier.scopusqualityQ2
dc.identifier.startpage1977en_US
dc.identifier.urihttps://doi.org/10.1080/02664763.2015.1125866
dc.identifier.volume43en_US
dc.identifier.wosWOS:000382570500002
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd. michael.wagreich@univie.ac.aten_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.relation.journalJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANCOVAen_US
dc.subjectIteratively Reweighting Algorithmen_US
dc.subjectLong-Tailed Symmetricen_US
dc.subjectRobustnessen_US
dc.subjectStochastic Covariateen_US
dc.titleStochastic Analysis of Covariance When the Error Distribution Is Long-Tailed Symmetricen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files