Publication:
Robust Sparse Principal Component Analysis: Situation of Full Sparseness

dc.authorwosidAlkan, Bilal Barış/Iaq-5213-2023
dc.authorwosidÜnaldı, Ihsan/B-6815-2015
dc.contributor.authorAlkan, B. Baris
dc.contributor.authorUnaldi, I
dc.date.accessioned2025-12-11T00:45:44Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Alkan, B. Baris] Univ Akdeniz, Dept Educ Measurement & Evaluat, TR-07000 Antalya, Turkey; [Unaldi, I] Univ Ondokuz Mayis, Dept Dept Biostat & Med Informat, TR-55000 Samsun, Turkeyen_US
dc.description.abstractPrincipal Component Analysis (PCA) is the main method of dimension reduction and data processing when the dataset is of high dimension. Therefore, PCA is a widely used method in almost all scientific fields. Because PCA is a linear combination of the original variables, the interpretation process of the analysis results is often encountered with some difficulties. The approaches proposed for solving these problems are called to as Sparse Principal Component Analysis (SPCA). Sparse approaches are not robust in existence of outliers in the data set. In this study, the performance of the approach proposed by Croux et al. (2013), which combines the advantageous properties of SPCA and Robust Principal Component Analysis (RPCA), will be examined through one real and three artificial datasets in the situation of full sparseness. In the light of the findings, it is recommended to use robust sparse PCA based on projection pursuit in analyzing the data. Another important finding obtained from the study is that the BIC and TPO criteria used in determining lambda are not much superior to each other. We suggest choosing one of these two criteria that give an optimal result.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.2478/jamsi-2022-0001
dc.identifier.endpage20en_US
dc.identifier.issn1336-9180
dc.identifier.issn1339-0015
dc.identifier.issue1en_US
dc.identifier.startpage5en_US
dc.identifier.urihttps://doi.org/10.2478/jamsi-2022-0001
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39006
dc.identifier.volume18en_US
dc.identifier.wosWOS:000820112700001
dc.language.isoenen_US
dc.publisherSciendoen_US
dc.relation.ispartofJournal of Applied Mathematics, Statistics and Informaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPrincipal Componenten_US
dc.subjectOutliersen_US
dc.subjectSparsityen_US
dc.subjectRobustnessen_US
dc.titleRobust Sparse Principal Component Analysis: Situation of Full Sparsenessen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files