Publication:
Predicting Live Weight for Female Rabbits of Meat Crosses From Body Measurements Using LightGBM, XGBoost and Support Vector Machine Algorithms

dc.authorscopusid24385660900
dc.authorscopusid56957224200
dc.authorscopusid59512223200
dc.authorscopusid49963478200
dc.authorscopusid58059784000
dc.authorscopusid58085744600
dc.authorscopusid58996380500
dc.authorwosidTırınk, Cem/Gry-5893-2022
dc.authorwosidYakubets, Taras/Kba-1323-2024
dc.authorwosidMatvieiev, Mykhailo/Acb-6174-2022
dc.authorwosidKaya, Fahrettin/Glr-4070-2022
dc.authorwosidGetya, Aniy/I-4371-2015
dc.authorwosidGetya, Andriy/I-4371-2015
dc.authorwosidOzkan, Cagri/Acn-7975-2022
dc.contributor.authorOnder, Hasan
dc.contributor.authorTirink, Cem
dc.contributor.authorYakubets, Taras
dc.contributor.authorGetya, Andriy
dc.contributor.authorMatvieiev, Mykhalio
dc.contributor.authorKononenko, Ruslan
dc.contributor.authorKaya, Fahrettin
dc.contributor.authorIDŞen, Uğur/0000-0001-6058-1140
dc.contributor.authorIDKaya, Fahrettin/0000-0003-1666-4859
dc.contributor.authorIDGetya, Aniy/0000-0002-4747-9261
dc.contributor.authorIDYakubets, Taras/0000-0003-4197-5034
dc.contributor.authorIDTirink, Cem/0000-0001-6902-5837
dc.contributor.authorIDMatvieiev, Mykhailo/0000-0003-1281-9032
dc.date.accessioned2025-12-11T01:38:30Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Onder, Hasan] Ondokuz Mayis Univ, Fac Agr, Dept Anim Sci, Samsun, Turkiye; [Tirink, Cem] Igdir Univ, Fac Agr, Dept Anim Sci, Igdir, Turkiye; [Yakubets, Taras; Getya, Andriy] Natl Univ Life & Environm Sci Ukraine, Fac Livestock Raising & Water Bioresources, Dept Genet Breeding & Reprod Biotechnol, Kyiv, Ukraine; [Matvieiev, Mykhalio] Natl Univ Life & Environm Sci Ukraine, Fac Livestock Raising & Water Bioresources, Dept Dairy & Beef Prod Technol, Kyiv, Ukraine; [Kononenko, Ruslan] Natl Univ Life & Environm Sci Ukraine, Fac Livestock Raising & Water Bioresources, Dept Hydrobiol & Ichthyol, Kyiv, Ukraine; [Sen, Ugur] Ondokuz Mayis Univ, Fac Agr, Dept Agr Biotechnol, Samsun, Turkiye; [Ozkan, Cagri Ozgur] Univ Kahramanmaras Sutcu Imam, Fac Agr, Dept Anim Sci, Kahramanmaras, Turkiye; [Tolun, Tolga] Kahramanmaras Sutcu Imam Univ, Fac Agr, Dept Bioengn, Kahramanmaras, Turkiye; [Kaya, Fahrettin] Kahramanmaras Sutcu Imam Univ, Andirin Vocat Sch, Dept Comp Technol, Kahramanmaras, Turkiyeen_US
dc.descriptionŞen, Uğur/0000-0001-6058-1140; Kaya, Fahrettin/0000-0003-1666-4859; Getya, Aniy/0000-0002-4747-9261; Yakubets, Taras/0000-0003-4197-5034; Tirink, Cem/0000-0001-6902-5837; Matvieiev, Mykhailo/0000-0003-1281-9032;en_US
dc.description.abstractPrediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals. A highly efficient gradient-boosting decision tree (LightGBM), eXtreme gradient-boosting (XGBoost) and support vector machine (SVM) algorithms were evaluated and compared to the prediction of BW. The coefficient of determination, root mean square error and mean absolute error values were used as comparison criteria. The results showed that LightGBM, XGBoost and SVM algorithms were well fit for the BW using the biometric measures with over 95% accuracy for both train and test sets. The BL was determined as the most explanatory variable on body weight.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1002/vms3.70149
dc.identifier.issn2053-1095
dc.identifier.issue1en_US
dc.identifier.pmid39792064
dc.identifier.scopus2-s2.0-85214908932
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1002/vms3.70149
dc.identifier.urihttps://hdl.handle.net/20.500.12712/45097
dc.identifier.volume11en_US
dc.identifier.wosWOS:001395107900001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofVeterinary Medicine and Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLightGBMen_US
dc.subjectPredictionen_US
dc.subjectRabbiten_US
dc.subjectSupport Vector Machineen_US
dc.subjectXGBoosten_US
dc.titlePredicting Live Weight for Female Rabbits of Meat Crosses From Body Measurements Using LightGBM, XGBoost and Support Vector Machine Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files