Publication: Bazı Schiff Bazı Türevlerinin Yapısal ve Spektroskopik Özelliklerinin Deneysel ve Teorik Yöntemlerle İncelenmesi
Abstract
Bu tezde, kapalı formülleri C15H14BrNO2 (I), C21H14Cl2F3N3O (II), C46H60N2O4 (III) ve C48H64N2O4 (IV) olarak verilen, kristal yapıda bileşikler sentezlenmiş, moleküler ve geometrik yapıları tek kristal X-ışını kırınımı, FTIR, NMR (1H- ve 13C-) ve UV-Vis spektroskopik yöntemleri kullanılarak incelenmiştir. Üç boyutlu Hirshfeld yüzeyleri ve bunların iki boyutlu grafikleri, moleküller arası etkileşimi CrystalExplorer3.1 programı kullanılarak incelenmiştir. Hesaplamalar, Yoğunluk Fonksiyoneli Teorisi (DFT) yöntemi, B3LYP yaklaşımı, 6-311++G(d,p) ve 6-31G(d,p) baz setleri kullanılarak gerçekleştirilmiştir. Bileşiklerin moleküler yapısı optimize edilmiş, teorik IR ve NMR spektral verileri elde edilmiş ve deneysel olanlarla karşılaştırılmıştır. Bileşiklerin moleküler elektrostatik potansiyel (MEP) hesaplamaları ile bileşiklerin kimyasal etkin bölgeleri ve yük dağılımları değerlendirilmiştir. Ayrıca, en yüksek enerjili dolu moleküler orbital (HOMO) ve en düşük enerjili boş moleküler orbital (LUMO) enerjileri elde edilmiş ve iyonizasyon potansiyeli, elektron etkinliği, yumuşaklık ve sertlik değerleri hesaplanmıştır. Optimize edilmiş moleküler yapı, doğal bağ orbital analizi, elektrostatik potansiyel ve DNA bazları ile elektron ilgisine dayalı yük transferi için aynı teorik olarak incelenmiştir.
In this thesis, compounds with the molecular formulas C15H14BrNO2 (I), C21H14Cl2F3N3O (II), C46H60N2O4 (III) and C48H64N2O4 (IV) were synthesized, their molecular and geometric structures were investigated using single crystal X-ray diffraction, FTIR, NMR (1H- and 13C-) and UV-Vis spectroscopic methods. The three-dimensional hirshfeld surfaces and their two-dimensional plots were created by CrystalExplorer3.1 program to obtain additional information about intemolecular interaction. Calculations were carried out using Density Functional Theory (DFT) method, B3LYP approach, 6-311++G(d,p) and 6-31G(d,p) basis sets. The molecular structure of the compounds was optimized, IR and NMR spectral data were obtained and compared with experimental ones. The chemical active regions and charge distribution of the compounds were evaluated by molecular electrostatic potential (MEP) calculations. Additionally, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were obtained and ionization potential, electron affinity, softness and hardness values were calculated. The optimized structure has been investigated using the same level of theory for natural bond orbital analysis, electrostatic potential, and the electrophilicity-based charge transfer with DNA bases.
In this thesis, compounds with the molecular formulas C15H14BrNO2 (I), C21H14Cl2F3N3O (II), C46H60N2O4 (III) and C48H64N2O4 (IV) were synthesized, their molecular and geometric structures were investigated using single crystal X-ray diffraction, FTIR, NMR (1H- and 13C-) and UV-Vis spectroscopic methods. The three-dimensional hirshfeld surfaces and their two-dimensional plots were created by CrystalExplorer3.1 program to obtain additional information about intemolecular interaction. Calculations were carried out using Density Functional Theory (DFT) method, B3LYP approach, 6-311++G(d,p) and 6-31G(d,p) basis sets. The molecular structure of the compounds was optimized, IR and NMR spectral data were obtained and compared with experimental ones. The chemical active regions and charge distribution of the compounds were evaluated by molecular electrostatic potential (MEP) calculations. Additionally, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were obtained and ionization potential, electron affinity, softness and hardness values were calculated. The optimized structure has been investigated using the same level of theory for natural bond orbital analysis, electrostatic potential, and the electrophilicity-based charge transfer with DNA bases.
Description
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
144
