Publication:
İha ile Derin Öğrenme Algoritmaları Kullanılarak Hasarlı Yapıların Tespit Edilmesi

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

Bu araştırmada, hasarlı yapıların hızlı ve güvenilir bir şekilde tespit edilebilmesi için derin öğrenme algoritmalarında evrişimsel sinir ağı mimarisinin bir modeli olan Mask Region-based Convolutional Neural Network (Mask R-CNN) modeli kullanılarak hasar tespiti yapılmaya çalışılmıştır. Eğitim alanı olarak 2010 yılında Haiti’de meydana gelen 316.000 insanın öldüğü, 280.000 civarı yapının hasar gördüğü 7.0 büyüklüğündeki deprem bölgesi seçilmiştir. Bölgede 5 cm ve 7 cm çözünürlüğe sahip insansız hava aracı görüntüleri çalışmada kullanılmıştır. Görüntüler ilk aşamada üç sınıfta “hasarlı”, “az hasarlı” ve “hasarsız” olarak eğitilip test edilmiştir. İnsansız hava aracı verileri ile yapılan test işleminde ise yapılar %58.62 oranıyla bulunmuş ve bulunan yapılar %83.53 genel doğrulukla sınıflandırılmıştır. İkinci aşamada görüntüler “hasarlı” ve “hasarsız” olarak iki sınıfta etiketlenip eğitim ve test işlemi gerçekleştirilmiştir. İnsansız hava aracı verileri ile yapılan test işleminde ise yapılar %74.50 oranıyla bulunmuş ve bulunan yapılar %95.12 genel doğruluk oranıyla sınıflandırılmıştır.

Description

Citation

WoS Q

Scopus Q

Source

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Volume

23

Issue

2

Start Page

427

End Page

437

Endorsement

Review

Supplemented By

Referenced By