Publication:
Subset Selection in Quantile Regression Analysis via Alternative Bayesian Information Criteria and Heuristic Optimization

dc.authorscopusid57191925575
dc.authorscopusid57191918830
dc.authorscopusid36126750400
dc.authorscopusid12766595200
dc.contributor.authorDunder, E.
dc.contributor.authorGumustekin, S.
dc.contributor.authorMurat, N.
dc.contributor.authorCengiz, M.A.
dc.date.accessioned2020-06-21T13:27:20Z
dc.date.available2020-06-21T13:27:20Z
dc.date.issued2017
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Dunder] Emre, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gumustekin] Serpil, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Murat] Naci, Department of Endustrial Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Cengiz] Mehmet Ali, Department of Statistics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractSubset selection is an extensively studied problem in statistical learning. Especially it becomes popular for regression analysis. This problem has considerable attention for generalized linear models as well as other types of regression methods. Quantile regression is one of the most used types of regression method. In this article, we consider subset selection problem for quantile regression analysis with adopting some recent Bayesian information criteria. We also utilized heuristic optimization during selection process. Simulation and real data application results demonstrate the capability of the mentioned information criteria. According to results, these information criteria can determine the true models effectively in quantile regression models. © 2017 Taylor & Francis Group, LLC.en_US
dc.identifier.doi10.1080/03610926.2016.1257718
dc.identifier.endpage11098en_US
dc.identifier.issn0361-0926
dc.identifier.issue22en_US
dc.identifier.scopus2-s2.0-85028533438
dc.identifier.scopusqualityQ2
dc.identifier.startpage11091en_US
dc.identifier.urihttps://doi.org/10.1080/03610926.2016.1257718
dc.identifier.volume46en_US
dc.identifier.wosWOS:000412555500013
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTaylor and Francis Inc. 325 Chestnut St, Suite 800 Philadelphia PA 19106en_US
dc.relation.ispartofCommunications in Statistics-Theory and Methodsen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian Informationen_US
dc.subjectHeuristicen_US
dc.subjectOptimizationen_US
dc.subjectQuantile Regressionen_US
dc.subjectSubset Selectionen_US
dc.titleSubset Selection in Quantile Regression Analysis via Alternative Bayesian Information Criteria and Heuristic Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files