Publication:
Improved Malaria Cells Detection Using Deep Convolutional Neural Network

dc.authorscopusid57195276768
dc.authorscopusid57697992100
dc.authorscopusid56005571400
dc.authorscopusid16229976900
dc.authorscopusid58504052900
dc.authorscopusid57423027700
dc.authorscopusid57423027700
dc.contributor.authorMahmood, S.N.
dc.contributor.authorMohammed, S.S.
dc.contributor.authorIsmaeel, A.G.
dc.contributor.authorGökalp, H.G.
dc.contributor.authorMahmood, I.N.
dc.contributor.authorAziz, D.A.
dc.contributor.authorAlani, S.
dc.date.accessioned2025-12-11T00:31:24Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mahmood] Sarmad Nozad, Electronic and Control Engineering Department, Northern Technical University, Mosul, Nineveh, Iraq; [Mohammed] Swash Sami, Electronic and Control Engineering Department, Northern Technical University, Mosul, Nineveh, Iraq; [Ismaeel] Ayad Ghany, College of Engineering Technology, Al-Kitab University, Kirkuk, Kirkuk, Iraq; [Gökalp] Hülya, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Mahmood] Iman Nozad, Kirkuk Health Directorate, Kirkuk, Kirkuk, Iraq; [Aziz] Dlnya Abdulahad, College of Engineering Technology, Al-Kitab University, Kirkuk, Kirkuk, Iraq; [Alani] Sameer, Electronic Computer Center, University of Anbar, Ramadi, Al Anbar, Iraqen_US
dc.description.abstractThis research presents a deep convolutional neural network (CNN) as a solution for identifying malarial cells that are infected. The AI model suggested in this work comprises a three-layered CNN and a two-layered dense neural network. The model can capture both minor and significant features by utilizing CNN, thereby extracting a maximum amount of information from the input data. The model is trained over 20 epochs and evaluated using the binary cross entropy loss function and accuracy metric to assess its performance. Remarkably, the proposed model achieved an impressive accuracy of 96% and maintained a loss value below 0.2 for both the training and validation datasets. Ultimately, this research demonstrates promising potential for automating the detection of malaria through parasite cell counting. © 2023 IEEE.en_US
dc.identifier.doi10.1109/HORA58378.2023.10156747
dc.identifier.isbn9798350337525
dc.identifier.scopus2-s2.0-85165673762
dc.identifier.urihttps://doi.org/10.1109/HORA58378.2023.10156747
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36993
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2023 -- 2023-06-08 through 2023-06-10 -- Istanbul -- 190025en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectFeature Extractionen_US
dc.subjectImage Segmentationen_US
dc.subjectMalariaen_US
dc.subjectParasite Classificationen_US
dc.titleImproved Malaria Cells Detection Using Deep Convolutional Neural Networken_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files