Publication: A New Matrix Form to Generate All 3 × 3 Involutory MDS Matrices Over F2m
| dc.authorscopusid | 57207960780 | |
| dc.authorscopusid | 8240135400 | |
| dc.authorscopusid | 15833929800 | |
| dc.authorscopusid | 12544814200 | |
| dc.authorscopusid | 35363583100 | |
| dc.contributor.author | Güzel, G.G. | |
| dc.contributor.author | Sakalli, M.T. | |
| dc.contributor.author | Akleylek, S. | |
| dc.contributor.author | Rijmen, V. | |
| dc.contributor.author | Çengellenmiş, Y. | |
| dc.date.accessioned | 2020-06-21T12:26:35Z | |
| dc.date.available | 2020-06-21T12:26:35Z | |
| dc.date.issued | 2019 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Güzel] Gülsüm Gözde, Department of Computer Science, Trakya Üniversitesi, Edirne, Edirne, Turkey; [Sakalli] Muharrem Tolga, Department of Computer Engineering, Trakya Üniversitesi, Edirne, Edirne, Turkey; [Akleylek] Sedat, Department of Computer Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Rijmen] Vincent, ESAT/COSIC, KU Leuven, Leuven, Vlaams-Brabant, Belgium; [Çengellenmiş] Yasemin, Department of Mathematics, Trakya Üniversitesi, Edirne, Edirne, Turkey | en_US |
| dc.description.abstract | In this paper, we propose a new matrix form to generate all 3×3 involutory and MDS matrices over F<inf>2m </inf> and prove that the number of all 3×3 involutory and MDS matrices over F<inf>2m </inf> is (2m−1)2⋅(2m−2)⋅(2m−4), where m>2. Moreover, we give 3×3 involutory and MDS matrices over F<inf>23 </inf>, F<inf>24 </inf> and F<inf>28 </inf> defined by the irreducible polynomials x3+x+1, x4+x+1 and x8+x7+x6+x+1, respectively, by considering the minimum XOR count, which is a metric used in the estimation of hardware implementation cost. Finally, we provide the maximum number of 1s in 3×3 involutory MDS matrices. © 2019 Elsevier B.V. | en_US |
| dc.identifier.doi | 10.1016/j.ipl.2019.02.013 | |
| dc.identifier.endpage | 68 | en_US |
| dc.identifier.issn | 0020-0190 | |
| dc.identifier.scopus | 2-s2.0-85063406209 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 61 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.ipl.2019.02.013 | |
| dc.identifier.volume | 147 | en_US |
| dc.identifier.wos | WOS:000467892500013 | |
| dc.identifier.wosquality | Q4 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier B.V. | en_US |
| dc.relation.ispartof | Information Processing Letters | en_US |
| dc.relation.journal | Information Processing Letters | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Cryptography | en_US |
| dc.subject | Diffusion Layer | en_US |
| dc.subject | Involutory Matrices | en_US |
| dc.subject | MDS Matrices | en_US |
| dc.title | A New Matrix Form to Generate All 3 × 3 Involutory MDS Matrices Over F2m | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
