Publication:
Day-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Market

dc.contributor.authorYulan, Yagmur
dc.contributor.authorBeykent, Ahad
dc.date.accessioned2025-12-11T00:36:17Z
dc.date.issued2026
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Yulan, Yagmur; Beykent, Ahad] Ondokuz Mayis Univ, Fac Engn, Dept Ind Engn, TR-55139 Samsun, Turkiyeen_US
dc.description.abstractAccurate short-term electricity price forecasts are essential for market participants to optimize bidding strategies, hedge risk and plan generation schedules. By leveraging advanced data analytics and machine learning methods, accurate and reliable price forecasts can be achieved. This study forecasts day-ahead prices in T & uuml;rkiye's electricity market using eXtreme Gradient Boosting (XGBoost). We benchmark XGBoost against four alternatives- Support Vector Machines (SVM), Long Short-Term Memory (LSTM), Random Forest (RF), and Gradient Boosting (GBM)-using 8760 hourly observations from 2023 provided by Energy Exchange Istanbul (EXIST). All models were trained on an identical chronological 80/20 train-test split, with hyperparameters tuned via 5-fold cross-validation on the training set. XGBoost achieved the best performance (Mean Absolute Error (MAE) = 144.8 TRY/MWh, Root Mean Square Error (RMSE) = 201.8 TRY/MWh, coefficient of determination (R-2) = 0.923) while training in 94 s. To enhance interpretability and identify key drivers, we employed Shapley Additive Explanations (SHAP), which highlighted a strong association between higher prices and increased natural-gas-based generation. The results provide a clear performance benchmark and practical guidance for selecting forecasting approaches in day-ahead electricity markets.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.32604/cmc.2025.068440
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.issue1en_US
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.32604/cmc.2025.068440
dc.identifier.urihttps://hdl.handle.net/20.500.12712/37774
dc.identifier.volume86en_US
dc.identifier.wosWOS:001622101700001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofCMC-Computers Materials & Continuaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDay-Ahead Electricity Price Forecastingen_US
dc.subjectMachine Learningen_US
dc.subjectXGBoosten_US
dc.subjectSHAPen_US
dc.titleDay-Ahead Electricity Price Forecasting Using the XGBoost Algorithm: An Application to the Turkish Electricity Marketen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files