Publication:
Fuzzy Autoregressive Distributed Lag Model-Based Forecasting

dc.authorscopusid56011249400
dc.authorwosidEren, Miraç/V-3475-2017
dc.contributor.authorEren, Miras
dc.contributor.authorIDEren, Miraç/0000-0002-5150-9144
dc.date.accessioned2025-12-11T01:01:45Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eren, Miras] Ondokuz Mayis Univ, Fac Econ & Adm Sci, Dept Econ, TR-55139 Samsun, Turkiyeen_US
dc.descriptionEren, Miraç/0000-0002-5150-9144en_US
dc.description.abstractThis research aims to be guided decision-makers in future planning by estimating the tendency of data consistently. In this context, it is thought that the integration of the Autoregressive Distributed Lag-ARDL models, gathering the independent factors and their past effects as well as the past trend of the dependent variable, with fuzzy regression methods, would give more realistic results. To prove the correctness of this idea, the Fuzzy-ARDL method has been proposed and tested the superiority of the research on the projection of USAs' annual oil consumption data examined by researchers previously. For this purpose, raw data of crude oil import price, population, gross national domestic production (GDP) per capita, and oil production variables, previously compiled annually, have been considered independent variables. Then the proposed model has been benchmarked with the other promising models from the fuzzy regression literature. As a result, according to various Accuracy Measures values, it has been seen that the proposed model outperforms the other promising models.(c) 2022 Elsevier B.V. All rights reserved.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.fss.2022.06.003
dc.identifier.endpage94en_US
dc.identifier.issn0165-0114
dc.identifier.issn1872-6801
dc.identifier.scopus2-s2.0-85133713338
dc.identifier.scopusqualityQ2
dc.identifier.startpage82en_US
dc.identifier.urihttps://doi.org/10.1016/j.fss.2022.06.003
dc.identifier.urihttps://hdl.handle.net/20.500.12712/40786
dc.identifier.volume459en_US
dc.identifier.wosWOS:000962525600001
dc.identifier.wosqualityQ1
dc.institutionauthorEren, Miras
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofFuzzy Sets and Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy Regressionen_US
dc.subjectAutoregressiveen_US
dc.subjectDistributed Lagen_US
dc.subjectEnergy Consumptionen_US
dc.subjectForecasten_US
dc.titleFuzzy Autoregressive Distributed Lag Model-Based Forecastingen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files