Publication:
A Novel Fuzzy Cumulative Sum Control Chart With an α-Level Cut Based on Trapezoidal Fuzzy Numbers for a Real Case Application

dc.authorscopusid57146825100
dc.authorscopusid6506681376
dc.authorscopusid23100981600
dc.contributor.authorOzdemir, Akin
dc.contributor.authorUcurum, Metin
dc.contributor.authorSerencam, Hueseyin
dc.contributor.authorIDÖzdemir, Akın/0000-0002-1716-6694
dc.date.accessioned2025-12-11T01:07:50Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Ozdemir, Akin] Ondokuz Mayis Univ, Dept Ind Engn, TR-55139 Samsun, Turkiye; [Ucurum, Metin] Bayburt Univ, Dept Ind Engn, TR-69000 Bayburt, Turkiye; [Serencam, Hueseyin] Kirklareli Univ, Dept Gastron & Culinary Arts, Kirklareli, Turkiyeen_US
dc.descriptionÖzdemir, Akın/0000-0002-1716-6694en_US
dc.description.abstractStatistical process control (SPC) is widely used to monitor production processes in many industries under certain conditions. When dealing with a quality characteristic for uncertainty, fuzzy numbers are used in the context of the statistical process control (SPC) to monitor a fuzzy production process. The aim of this paper is fourfold. One, a fuzzy X-R control chart with an alpha-level cut is used based on trapezoidal fuzzy numbers (TFNs) for detecting the large shifts in the fuzzy process mean. Second, a fuzzy cumulative sum (FCUSUM) control with an alpha-level cut based on TFNs is firstly developed for detecting the small shifts in the fuzzy process mean. Third, the fuzzy process capability indices (FPCIs) are presented to measure the fuzzy process performance. Finally, an ultra-fine calcite production process is controlled with both the fuzzy X-R control chart and the proposed FCUSUM control chart. The results of the fuzzy X-R control charts show that the fuzzy production process is in control, and large shifts in the fuzzy process mean were detected. On the other hand, the results of the FCUSUM charts show that the fuzzy production process is out of control, and small shifts in the fuzzy process mean were detected. FPCIs are also conducted, and the results of fuzzy C-pk indices show that the ultra-fine calcite production process is not capable of meeting specification limits.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1007/s13369-023-08256-z
dc.identifier.endpage7525en_US
dc.identifier.issn2193-567X
dc.identifier.issn2191-4281
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85175972827
dc.identifier.scopusqualityQ1
dc.identifier.startpage7507en_US
dc.identifier.urihttps://doi.org/10.1007/s13369-023-08256-z
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41463
dc.identifier.volume49en_US
dc.identifier.wosWOS:001101564500002
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArabian Journal for Science and Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy Cumulative Sum Control Charten_US
dc.subjectAlpha-Level Cuten_US
dc.subjectTrapezoidal Fuzzy Numberen_US
dc.subjectFuzzy Process Capability Analysisen_US
dc.subjectFuzzy X-R Control Charten_US
dc.titleA Novel Fuzzy Cumulative Sum Control Chart With an α-Level Cut Based on Trapezoidal Fuzzy Numbers for a Real Case Applicationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files