Publication: Yapısal Sismik Yalıtımın Sonlu Elemanlar Metodu ile Tam Ölçekli Değerlendirilmesi
Abstract
Bu doktora tez çalışmasında, Tokyo Tower kulesinin ankastre temelli titreşim söndürücülü mevcut yapısı, dört temel parametre (kesme kuvveti dağılımı, kütle dağılımı, mod periyotları ve mod şekilleri) esas alınarak kalibre edilmiş ve tam ölçekli, gerçekçi davranışa sahip bir Sonlu Elemanlar Modeli (SEM) oluşturulmuştur. Bu model, yüksek doğrulukla yapı davranışını temsil etmek üzere hazırlanmış, referans bir yapı modeli olarak temel alınmıştır. Elde edilen bu model, Prof. Dr. Azer Kasımzade ve ekibi tarafından geliştirilen, patentli Yapısal Sismik Yalıtım Yöntemi (YSYY) ile Yapısal Sismik Yalıtım Sistemine (YSYS) dönüştürülmüştür. Bunun için kule ayaklarının eğrisel alt yüzeyi ile temelinin eğrisel üst yüzeyi Sismik Yalıtım Elemanları (SYE) aracılığıyla birbirine bağlanmış ve kuleye ters sarkaç prensibiyle hareket etmesi özelliği kazandırarak onun deprem etkileri karşısında daha esnek ve dengeli bir sistem haline gelmesini sağlamıştır. YSYS-ne dönüştürülmüş Tokyo Tower kulesi Japonya Sismik Tasarım Yönetmeliği'ne göre ölçeklenmiş altı farklı gerçek deprem kaydı (Kobe, Düzce, Chi-Chi, Darfield, El Mayor ve Tohoku) altında zaman tanım alanında doğrusal olmayan analize tabi tutulmuştur. Bu analizde yapının tepe ivmesi, taban ivmesi, yer değiştirme, taban kesme kuvveti ve momenti gibi dinamik tepkileri değerlendirilmiş YSYY yönteminin uygulamasının sismik performansı yükselttiği nicel olarak ortaya konulmuştur. Analiz sonuçlarına göre, YSYY yöntemin uygulanmasıyla elde edilen YSYS sistemli Tokyo Tower kulesi modelinde titreşim söndürücülü mevcut Tokyo Tower kulesi ile mukayesede sismik tepkilerde belirgin ve yüksek oranlı (taban kesme kuvveti ve momenti ortalama %91) azalmalar elde edilmiştir. Bu azalmalar ışığında boyutlandırma sonucunda YSYS sistemli Tokyo Tower kulesi kütlesi, titreşim söndürücülü mevcut Tokyo Tower kulesi ile kıyasla %31 azalmıştır. Bu sonuç ile YSYY yöntemi hafif ve yüksek yapıların tasarımına yenilik getirmiştir. Bir diğer önemli husus da, YSYY yönteminin uygulanması ile yapının hakim periyodu uzatılarak rezonans etkisinin minimize edilmesidir. YSYY yöntemi ile elde edilmiş YSYS sisteminin Yapı Dinamiği ve Deprem Mühendisliğine getirdiği bu üç önemli özellik-yenilik yapının performansını üst düzeye taşıdığını ve hafif, yüksek yapıların sürdürülebilir tasarımları için güçlü bir alternatif sunduğunu göstermektedir.
In this doctoral research, the existing fixed-base Tower structure equipped with vibration control dampers, was calibrated based on four key parameters (shear force distribution, mass distribution, mode periods and mode shapes), and a full-scale realistic Finite Element Model (FEM) was created. This model was designed to represent the structural behavior with high accuracy and served as a reference structure model. This resulting model was converted into the Structural Seismic Isolation System (SSIS) using the patented Structural Seismic Isolation Method (SSIM) developed by Prof. Dr. Azer Kasımzade and his team. For this purpose, the contact interfaces between curved lower surfaces of the superstructure and the curved upper surfaces of the foundation were installed by the Seismic Isolation Elements (SIE). This gave the tower the ability to move using the inverted pendulum principle, making it a more resilient and stable system against earthquake effects. The Tokyo Tower, converted to the Structural Seismic Isolation System (SSIS), was subjected to nonlinear time-history analysis under six different earthquake records (Kobe, Duzce, Chi-Chi, Darfield, El Mayor, and Tohoku) scaled according to the Japanese Seismic Design Code. In this analysis, the structure's dynamic responses, including top acceleration, base acceleration, displacement, base shear force, and moment, were evaluated, and the application of the Structural Seismic Isolation Method (SSIM) was quantitatively demonstrated to improve seismic performance. According to the analysis results, the Tokyo Tower model with the SSIS system, obtained by applying the SSIM method, achieved significant reductions in seismic response (an average of 91% in base shear force and moment) compared to the existing Tokyo Tower with vibration control dampers. In light of these reductions, the mass of the Tokyo Tower with the SSIS system was reduced by 31% compared to the existing Tokyo Tower with vibration control dampers. This result demonstrates that the SSIM method has brought innovation to the design of lightweight, high-rise buildings. Another important aspect is the minimization of resonance effects by extending the dominant period of the structure through the application of the SSIM method. These three important features-innovations brought to Structural Dynamics and Earthquake Engineering by the SSIS system obtained with the SSIM method, show that it takes the performance of the structure to the next level and offers a strong alternative for the sustainable design of lightweight, high-rise buildings.
In this doctoral research, the existing fixed-base Tower structure equipped with vibration control dampers, was calibrated based on four key parameters (shear force distribution, mass distribution, mode periods and mode shapes), and a full-scale realistic Finite Element Model (FEM) was created. This model was designed to represent the structural behavior with high accuracy and served as a reference structure model. This resulting model was converted into the Structural Seismic Isolation System (SSIS) using the patented Structural Seismic Isolation Method (SSIM) developed by Prof. Dr. Azer Kasımzade and his team. For this purpose, the contact interfaces between curved lower surfaces of the superstructure and the curved upper surfaces of the foundation were installed by the Seismic Isolation Elements (SIE). This gave the tower the ability to move using the inverted pendulum principle, making it a more resilient and stable system against earthquake effects. The Tokyo Tower, converted to the Structural Seismic Isolation System (SSIS), was subjected to nonlinear time-history analysis under six different earthquake records (Kobe, Duzce, Chi-Chi, Darfield, El Mayor, and Tohoku) scaled according to the Japanese Seismic Design Code. In this analysis, the structure's dynamic responses, including top acceleration, base acceleration, displacement, base shear force, and moment, were evaluated, and the application of the Structural Seismic Isolation Method (SSIM) was quantitatively demonstrated to improve seismic performance. According to the analysis results, the Tokyo Tower model with the SSIS system, obtained by applying the SSIM method, achieved significant reductions in seismic response (an average of 91% in base shear force and moment) compared to the existing Tokyo Tower with vibration control dampers. In light of these reductions, the mass of the Tokyo Tower with the SSIS system was reduced by 31% compared to the existing Tokyo Tower with vibration control dampers. This result demonstrates that the SSIM method has brought innovation to the design of lightweight, high-rise buildings. Another important aspect is the minimization of resonance effects by extending the dominant period of the structure through the application of the SSIM method. These three important features-innovations brought to Structural Dynamics and Earthquake Engineering by the SSIS system obtained with the SSIM method, show that it takes the performance of the structure to the next level and offers a strong alternative for the sustainable design of lightweight, high-rise buildings.
Description
Keywords
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
178
