Publication:
Maximum Likelihood Estimation for the Two-Parameter Maxwell Distribution

dc.authorscopusid54581049600
dc.authorscopusid58959723900
dc.authorwosidFaouri, Adi/Kcx-8959-2024
dc.contributor.authorKasap, P.
dc.contributor.authorFaouri, Ao
dc.contributor.authorIDFaouri, Adi/0000-0003-4499-1240
dc.contributor.authorIDKasap, Pelin/0000-0002-1106-710X
dc.date.accessioned2025-12-11T01:18:29Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kasap, P.; Faouri, Ao] Ondokuz Mayis Univ, Fac Sci, Dept Stat, Atakum, Samsun, Turkiyeen_US
dc.descriptionFaouri, Adi/0000-0003-4499-1240; Kasap, Pelin/0000-0002-1106-710Xen_US
dc.description.abstractThe Maxwell distribution is popular in physics, chemistry and statistical dynamics. Since the estimators obtained using the maximum likelihood method have the desired properties of being efficient, consistent, and asymptotically normal under regularity conditions, this method is a widely used method to estimate the parameters of a probability distribution. Although parameter estimates can be obtained using this method, the derivatives of the log-likelihood equations, known as ML estimation equations, with respect to the parameters do not always have clear solutions. Therefore, numerical methods are used to solve these equations. Various traditional numerical methods for this purpose are well-documented in the literature. Additionally, highly powered algorithms with no required mathematical assumption that improve the computational efficiency like heuristic algorithms can be used to solve these equations. In this article, the maximum likelihood method is applied to estimate the location and scale parameters of the two parameter Maxwell distribution. High-performance heuristic algorithms, such as particle swarm optimization and genetic algorithms, are used and compared with traditional numerical techniques, including Nelder-Mead and Quasi-Newton methods. To show the performance of these techniques, an extensive Monte Carlo simulation study was conducted to compare the efficiencies of maximum likelihood estimators of model parameters concerning bias, mean square error, and deficiency criteria. Simulation results showed that genetic algorithm and particle swarm optimization estimators are more efficient than the other traditional algorithms for estimating the location and scale parameters for the two-parameter Maxwell distribution.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.4038/jnsfsr.v52i4.11928
dc.identifier.endpage458en_US
dc.identifier.issn1391-4588
dc.identifier.issn2362-0161
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85216262962
dc.identifier.scopusqualityQ3
dc.identifier.startpage441en_US
dc.identifier.urihttps://doi.org/10.4038/jnsfsr.v52i4.11928
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42741
dc.identifier.volume52en_US
dc.identifier.wosWOS:001443174700004
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherNational Science Foundation Sri Lankaen_US
dc.relation.ispartofJournal of the National Science Foundation of Sri Lankaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIterative Methodsen_US
dc.subjectHeuristic and Traditional Algorithmsen_US
dc.subjectMaximum Likelihooden_US
dc.subjectMonte Carlo Simulationen_US
dc.subjectTwo-Parameter Maxwell Distributionen_US
dc.titleMaximum Likelihood Estimation for the Two-Parameter Maxwell Distributionen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files