Publication:
LinRegDroid: Detection of Android Malware Using Multiple Linear Regression Models-Based Classifiers

dc.authorscopusid56589621700
dc.authorscopusid15833929800
dc.authorscopusid22953804000
dc.authorwosidAkleylek, Sedat/D-2090-2015
dc.authorwosidKiliç, Erdal/Hjy-2853-2023
dc.authorwosidSahin, Durmus/Aaj-7961-2020
dc.contributor.authorSahin, Durmus Ozkan
dc.contributor.authorAkleylek, Sedat
dc.contributor.authorKilic, Erdal
dc.contributor.authorIDAkleylek, Sedat/0000-0001-7005-6489
dc.contributor.authorIDKiliç, Erdal/0000-0003-1585-0991
dc.date.accessioned2025-12-11T01:18:51Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Sahin, Durmus Ozkan; Akleylek, Sedat; Kilic, Erdal] Ondokuz Mayis Univ, Dept Comp Engn, TR-55139 Samsun, Turkeyen_US
dc.descriptionAkleylek, Sedat/0000-0001-7005-6489; Kiliç, Erdal/0000-0003-1585-0991;en_US
dc.description.abstractIn this study, a framework for Android malware detection based on permissions is presented. This framework uses multiple linear regression methods. Application permissions, which are one of the most critical building blocks in the security of the Android operating system, are extracted through static analysis, and security analyzes of applications are carried out with machine learning techniques. Based on the multiple linear regression techniques, two classifiers are proposed for permission-based Android malware detection. These classifiers are compared on four different datasets with basic machine learning techniques such as support vector machine, k-nearest neighbor, Naive Bayes, and decision trees. In addition, using the bagging method, which is one of the ensemble learning, different classifiers are created, and the classification performance is increased. As a result, remarkable performances are obtained with classification algorithms based on linear regression models without the need for very complex classification algorithms.en_US
dc.description.sponsorshipOndokuz May~s University BAP [PYO.MUH.1908.22.001]en_US
dc.description.sponsorshipThis study was supported by Ondokuz May~s University BAP under Grant PYO.MUH.1908.22.001.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2022.3146363
dc.identifier.endpage14259en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85124098275
dc.identifier.scopusqualityQ1
dc.identifier.startpage14246en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2022.3146363
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42778
dc.identifier.volume10en_US
dc.identifier.wosWOS:000753398500001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Institute of Electrical and Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMalwareen_US
dc.subjectClassification Algorithmsen_US
dc.subjectMachine Learningen_US
dc.subjectLinear Regressionen_US
dc.subjectSmart Phonesen_US
dc.subjectFeature Extractionen_US
dc.subjectMachine Learning Algorithmsen_US
dc.subjectEnsemble Learningen_US
dc.subjectLinear Regressionen_US
dc.subjectMachine Learningen_US
dc.subjectMalware Analysisen_US
dc.subjectPermission-Based Android Malware Detectionen_US
dc.subjectStatic Analysisen_US
dc.titleLinRegDroid: Detection of Android Malware Using Multiple Linear Regression Models-Based Classifiersen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files