Publication:
Clustered Bayesian Classification for Within-Class Separation

dc.authorscopusid57194769905
dc.authorscopusid57212144949
dc.authorscopusid12766595200
dc.authorwosidCengiz, Mehmet/Agz-9391-2022
dc.authorwosidSağlam, Fatih/Aaa-4146-2022
dc.authorwosidYıldırım, Emre/Jkk-9857-2023
dc.contributor.authorSaglam, Fatih
dc.contributor.authorYildirim, Emre
dc.contributor.authorCengiz, Mehmet Ali
dc.contributor.authorIDSağlam, Fatih/0000-0002-2084-2008
dc.date.accessioned2025-12-11T01:08:35Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saglam, Fatih; Yildirim, Emre; Cengiz, Mehmet Ali] Ondokuz Mayis Univ, Fac Art & Sci, Dept Stat, Samsun, Turkey; [Saglam, Fatih] Ondokuz Mayis Univ, Fac Art & Sci, Dept Stat, Samsun, Turkeyen_US
dc.descriptionSağlam, Fatih/0000-0002-2084-2008en_US
dc.description.abstractThe Bayesian classification is one of the frequently used approaches in machine learning. This approach obtains probabilities based on attributes of classes using Bayes' theorem and makes predictions according to these probabilities. Bayesian classifiers employ densities such as Gaussian, kernel, multivariate Gaussian, and Copula densities when attributes consist of continuous variables. These densities partially produce rough density values. When the attributes of any of the classes are concentrated on more than one region, above mentioned densities are not inherently suitable. In order to overcome this problem, this study introduces a novel approach called Clustered Bayesian classification. The proposed method creates a new class variable by detecting the different concentrations within the class using the Gaussian Mixture Clustering method. It makes predictions by setting a model over the new class variable. Then, the probabilities of the original classes are calculated over the prob-abilities of the new classes. The proposed method is compared with 5 different Bayesian classifiers on 27 different data sets. As a result, it has been seen that Clustered Bayesian classification outperformed all Bayesian classifiers for different performance metrics.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.eswa.2022.118152
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.scopus2-s2.0-85134725859
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2022.118152
dc.identifier.urihttps://hdl.handle.net/20.500.12712/41582
dc.identifier.volume208en_US
dc.identifier.wosWOS:000835492600003
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian Classificationen_US
dc.subjectDensity Estimationen_US
dc.subjectClusteringen_US
dc.titleClustered Bayesian Classification for Within-Class Separationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files