Publication:
A Hybrid Machine Learning Approach to Fabric Defect Detection and Classification

dc.authorscopusid57697992100
dc.authorscopusid16229976900
dc.contributor.authorMohammed, S.S.
dc.contributor.authorGökalp, H.G.
dc.date.accessioned2025-12-11T00:30:19Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mohammed] Swash Sami, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Gökalp] Hülya, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractThis paper proposes a novel approach to detect and classify defects in fabric. Fabric defects may cause a roll of fabric to be graded as second or worse in quality checks, and may affect sales. Traditionally, fabrics are inspected by skilled workers at an inspection platform, which is a long and tiring process, and error-prone. Automated detection of defects in fabric has the potential to eliminate human errors and improve accuracy; therefore it has been an area of research over the last decade. This paper proposes a novel model to detect and classify defects in fabric by training and evaluating our model using the AITEX data set. In the proposed model, the images of fabrics are first fed into U-Net, which is a convolutional neural network (CNN), to determine whether the fabric is defect-free or not. VGG16 and random forest are then used to classify the defects in the fabrics. The training settings of the model were chosen as initial learning rate = 0.001, β1 = 0.9 and β2 =.999. The proposed approach achieved accuracy of 99.3% to detect defects, with high accuracy to classify sloughed filling (100%), broken pick (97%), broken yarn (80%) and fuzzy ball (74%), but low for nep (12.5%) and cut selvage (0%). © 2022, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.en_US
dc.identifier.doi10.1007/978-3-031-01984-5_11
dc.identifier.endpage147en_US
dc.identifier.isbn9783032019035
dc.identifier.isbn9783031969430
dc.identifier.isbn9783031944413
dc.identifier.isbn9783032014719
dc.identifier.isbn9783642039775
dc.identifier.isbn9783031717154
dc.identifier.isbn9783319737119
dc.identifier.isbn9783030955304
dc.identifier.isbn9783642236341
dc.identifier.isbn9783031606649
dc.identifier.issn1867-8211
dc.identifier.scopus2-s2.0-85130283055
dc.identifier.scopusqualityQ4
dc.identifier.startpage135en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-01984-5_11
dc.identifier.urihttps://hdl.handle.net/20.500.12712/36903
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICSTen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAccuracyen_US
dc.subjectCNNen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectF1 Scoreen_US
dc.subjectFabric Defectsen_US
dc.subjectPrecisionen_US
dc.subjectRandom Foresten_US
dc.subjectRecallen_US
dc.subjectU-Neten_US
dc.subjectVGG16en_US
dc.titleA Hybrid Machine Learning Approach to Fabric Defect Detection and Classificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files