Publication:
A New Approach Based on Artificial Neural Networks for High Order Multivariate Fuzzy Time Series

dc.authorscopusid23093703600
dc.authorscopusid23092915500
dc.authorscopusid24282075600
dc.authorscopusid24282155300
dc.authorscopusid57211930065
dc.authorwosidYolcu, Ufuk/Jtt-8663-2023
dc.authorwosidBasaran, Murat/U-4338-2019
dc.authorwosidAladag, Cagdas/D-2140-2010
dc.authorwosidEgrioglu, Erol/Aae-4706-2019
dc.contributor.authorEgrioglu, Erol
dc.contributor.authorAladag, Cagdas Hakan
dc.contributor.authorYolcu, Ufuk
dc.contributor.authorUslu, Vedide R.
dc.contributor.authorBasaran, Murat A.
dc.contributor.authorIDAladag, Cagdas Hakan/0000-0002-3953-7601
dc.contributor.authorIDYolcu, Ufuk/0000-0002-0172-3353
dc.contributor.authorIDEgrioglu, Erol/0000-0003-4301-4149
dc.date.accessioned2025-12-11T01:26:23Z
dc.date.issued2009
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aladag, Cagdas Hakan] Hacettepe Univ, Dept Stat, TR-06800 Ankara, Turkey; [Egrioglu, Erol; Yolcu, Ufuk; Uslu, Vedide R.] Ondokuz Mayis Univ, Dept Stat, TR-55139 Samsun, Turkey; [Basaran, Murat A.] Nigde Univ, Dept Math, TR-51000 Nigde, Turkeyen_US
dc.descriptionAladag, Cagdas Hakan/0000-0002-3953-7601; Yolcu, Ufuk/0000-0002-0172-3353; Egrioglu, Erol/0000-0003-4301-4149en_US
dc.description.abstractFuzzy time series methods have been recently becoming very popular in forecasting. These methods can be categorized into two subclasses that are univariate and multivariate approaches. It is a known fact that real time series data can actually be affected by many factors. In this case, the using multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. To obtain fuzzy forecasts when multivariate fuzzy time series approach is adopted, the most applied method is using tables of fuzzy relations. However, employing this method is a computationally though task. In this study, we introduce a new method that does not require using fuzzy logic relation tables in order to determine fuzzy relationships. Instead, a feed forward artificial neural network is employed to determine fuzzy relationships. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. Expert Systems with Applications, 35, 691-700] and Lee et al. [Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468-477]. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.eswa.2009.02.057
dc.identifier.endpage10594en_US
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue7en_US
dc.identifier.scopus2-s2.0-67349187003
dc.identifier.scopusqualityQ1
dc.identifier.startpage10589en_US
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.02.057
dc.identifier.urihttps://hdl.handle.net/20.500.12712/43749
dc.identifier.volume36en_US
dc.identifier.wosWOS:000266851000044
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Time Seriesen_US
dc.subjectMultivariate Fuzzy Time Series Approachesen_US
dc.titleA New Approach Based on Artificial Neural Networks for High Order Multivariate Fuzzy Time Seriesen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files