Publication:
Spectral Mapping Theorem for Representations of Measure Algebras

dc.authorscopusid25123084500
dc.contributor.authorMustafayev, H.
dc.date.accessioned2025-12-11T01:57:32Z
dc.date.issued1997
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Mustafayev] Heybetkulu S., Department of Mathematics, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractLet G be a locally compact abelian group, M<inf>0</inf>(G) be a closed regular subalgebra of the convolution measure algebra M(G) which contains the group algebra L1(G) and ω : M<inf>0</inf>(G) → B be a continuous homomorphism of M<inf>0</inf>(G) into the unital Banach algebra B (possibly noncommutative) such that ω(L1(G)) is without order with respect to B in the sense that if for all b ∈ B, b.ω(L1(G)) = {0} implies b = 0. We prove that if sp(ω) is a synthesis set for L1(G) then the equality σ<inf>B</inf>(ω(μ)) = μ̂(sp(ω)) holds for each mu; ∈ M<inf>0</inf>(G), where sp(ω) denotes the Arveson spectrum of ω, σ<inf>B</inf>(.) the usual spectrum in B, μ̂ the Fourier-Stieltjes transform of μ.en_US
dc.identifier.doi10.1017/s0013091500023701
dc.identifier.endpage266en_US
dc.identifier.issn0013-0915
dc.identifier.issn1464-3839
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-25744461705
dc.identifier.scopusqualityQ3
dc.identifier.startpage261en_US
dc.identifier.urihttps://doi.org/10.1017/s0013091500023701
dc.identifier.urihttps://hdl.handle.net/20.500.12712/47436
dc.identifier.volume40en_US
dc.identifier.wosqualityQ2
dc.institutionauthorMustafayev, H.
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofProceedings of the Edinburgh Mathematical Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSpectral Mapping Theorem for Representations of Measure Algebrasen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files