Publication:
Prediction and Optimization of Nitrogen Losses in Co-Composting Process by Using a Hybrid Cascaded Prediction Model and Genetic Algorithm

dc.authorscopusid57470399700
dc.authorscopusid57200651210
dc.authorscopusid57090524600
dc.authorscopusid17436339900
dc.authorwosidTemel, Fulya/U-8361-2018
dc.authorwosidCagcag Yolcu, Ozge/Hlw-7645-2023
dc.contributor.authorKabak, Elif Tugce
dc.contributor.authorYolcu, Ozge Cagcag
dc.contributor.authorTemel, Fulya Aydm
dc.contributor.authorTuran, Nurdan Gamze
dc.contributor.authorIDAydin Temel, Fulya/0000-0001-8042-9998
dc.contributor.authorIDCagcag Yolcu, Ozge/0000-0003-3339-9313
dc.date.accessioned2025-12-11T01:14:54Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Kabak, Elif Tugce; Turan, Nurdan Gamze] Ondokuz Mayis Univ, Fac Engn, Dept Environm Engn, TR-55200 Samsun, Turkey; [Yolcu, Ozge Cagcag] Marmara Univ, Fac Sci & Arts, Dept Stat, TR-34722 Istanbul, Turkey; [Temel, Fulya Aydm] Giresun Univ, Fac Engn, Dept Environm Engn, TR-28200 Giresun, Turkeyen_US
dc.descriptionAydin Temel, Fulya/0000-0001-8042-9998; Cagcag Yolcu, Ozge/0000-0003-3339-9313;en_US
dc.description.abstractIn this study, the effects of co-composting of food waste and poultry waste on nitrogen losses and maturity were investigated. The different mixture ratios were used and the effectiveness of co-composting was compared with mono-composting of each waste. Also, a linear and nonlinear hybrid tool based on a cascaded forward neural network was used to estimate nitrogen losses of all reactors. The proposed hybrid tool produced predictions with mean absolute percentage error (MAPE) values of approximately 1-2% on all data points containing the training, validation, and test datasets. These results can be considered outstanding, especially when compared to Response Surface Methodology (RSM), which produces predictions with MAPE values of approximately 15% on all data points. The optimal values from the genetic algorithm (GA) were for poultry waste of 17.20%, for a duration of 97.64 days. These findings are invaluable, especially when it is costly and difficult to renew the composting process by creating a new experimental setup.en_US
dc.description.sponsorshipOndokuz Mayis University [PYO.MUH.1904.19.027]; [MUH.1904.19.027]en_US
dc.description.sponsorshipThis study was supported by the scientific research numbered PYO.MUH.1904.19.027 by Ondokuz Mayis University.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.cej.2022.135499
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.scopus2-s2.0-85125506813
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cej.2022.135499
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42335
dc.identifier.volume437en_US
dc.identifier.wosWOS:000779663000004
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science SAen_US
dc.relation.ispartofChemical Engineering Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCo-Compostingen_US
dc.subjectFood Wasteen_US
dc.subjectPoultry Wasteen_US
dc.subjectCascade Forward Neural Networken_US
dc.subjectResponse Surface Methodologyen_US
dc.subjectGenetic Algorithmen_US
dc.titlePrediction and Optimization of Nitrogen Losses in Co-Composting Process by Using a Hybrid Cascaded Prediction Model and Genetic Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files