Publication:
Applicability of Radial-Based Artificial Neural Networks (RBNN) on Coliform Calculation: A Case of Study

dc.authorscopusid58289142200
dc.authorscopusid35225280700
dc.authorscopusid55360859700
dc.authorwosidArdali-Orhan, Yuksel/S-2486-2017
dc.authorwosidSisman, Aziz/Hhc-1818-2022
dc.authorwosidArdali, Yuksel/S-2486-2017
dc.authorwosidAydın Er, Bilge/Jdm-2086-2023
dc.contributor.authorAydin Er, Bilge
dc.contributor.authorSisman, Aziz
dc.contributor.authorArdali, Yuksel
dc.contributor.authorIDArdali, Yuksel/0000-0003-1648-951X
dc.date.accessioned2025-12-11T00:51:52Z
dc.date.issued2022
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Aydin Er, Bilge; Ardali, Yuksel] Ondokuz Mayis Univ, Dept Environm Engn, TR-55020 Samsun, Turkey; [Sisman, Aziz] Ondokuz Mayis Univ, Dept Dept Geomat Engn, TR-55020 Samsun, Turkeyen_US
dc.descriptionArdali, Yuksel/0000-0003-1648-951X;en_US
dc.description.abstractDue to the increasing population, urbanization and economic reasons, it is inevitable to use deep-sea discharges. The fact that there is no alternative and less pollution of the environment is the reason for the preference of deep-sea discharges. In this study, it is aimed to estimate the coliform values of the Tekkekoy deep sea discharge system, which is chosen as an application area, by using a radial-based artificial neural network structure. Firstly, samples taken from the field were examined in a laboratory environment. Values obtained as a result of laboratory studies were used as input in Radial basis artificial neural network (RBNN) architecture. It has been determined that the models prepared by using various combinations have correlation values ranging from 91.5% to 97.2%. The best performing models were models prepared using 10 neurons. From these successful results, it was determined that RBNN structures are useful in coliform prediction.en_US
dc.description.sponsorshipMinistry of Environment and Urbanizationen_US
dc.description.sponsorshipThis work was supported by the Ministry of Environment and Urbanization, Project name; Determination of Deep Sea Discharge Design Criteria. The authors would like to thank for this support.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.14744/sigma.2022.00088
dc.identifier.endpage731en_US
dc.identifier.issn1304-7205
dc.identifier.issn1304-7191
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85160230817
dc.identifier.scopusqualityQ4
dc.identifier.startpage724en_US
dc.identifier.urihttps://doi.org/10.14744/sigma.2022.00088
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39780
dc.identifier.volume40en_US
dc.identifier.wosWOS:001098280200001
dc.language.isoenen_US
dc.publisherYildiz Technical Universityen_US
dc.relation.ispartofSigma Journal of Engineering and Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBlack Seaen_US
dc.subjectDeep Sea Dischargeen_US
dc.subjectColiforen_US
dc.subjectArtificial Neural Networken_US
dc.titleApplicability of Radial-Based Artificial Neural Networks (RBNN) on Coliform Calculation: A Case of Studyen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files