Publication:
Robust Emotion Recognition in Thermal Imaging with Convolutional Neural Networks and Grey Wolf Optimization

dc.authorscopusid59319312900
dc.authorscopusid35732398300
dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.authorwosidTepe, Cengiz/Gvt-1840-2022
dc.contributor.authorAtchogou, Anselme
dc.contributor.authorTepe, Cengiz
dc.contributor.authorIDTepe, Cengiz/0000-0003-4065-5207
dc.contributor.authorIDAtchogou, Anselme/0009-0002-1593-516X
dc.date.accessioned2025-12-11T01:14:04Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Atchogou, Anselme] Ondokuz Mayis Univ, Grad Educ Inst, Dept Intelligent Syst Engn, Samsun, Turkiye; [Tepe, Cengiz] Ondokuz Mayis Univ, Fac Engn, Dept Elect & Elect Engn, Samsun, Turkiyeen_US
dc.descriptionTepe, Cengiz/0000-0003-4065-5207; Atchogou, Anselme/0009-0002-1593-516Xen_US
dc.description.abstractFacial Expression Recognition (FER) is a pivotal technology in human-computer interaction, with applications spanning psychology, virtual reality, and advanced driver assistance systems. Traditional FER using visible light cameras faces challenges in low light conditions, shadows, and reflections. This study explores thermal imaging as an alternative, leveraging its ability to capture heat radiation and overcome lighting issues. We propose a novel approach that combines pre-trained models, particularly EfficientNet variants, with Grey Wolf Optimization (GWO) and various classifiers for robust emotion recognition. Ten pre-trained CNN models, including variants of EfficientNet (EfficientNet-B0, B3, B4, B7, V2L, V2M, V2S), ResNet50, MobileNet, and InceptionResNetV2, are utilized to extract features from thermal images. GWO is employed to optimize the parameters of four classifiers: Support Vector Machine (SVM), Random Forest, Gradient Boosting, and k-Nearest Neighbors (kNN). Two popular thermal image datasets, IRDatabase and KTFE, are used to assess the suggested methodology. Combining EfficientNet-B7 with GWO and kNN or SVM for eight distinct emotions (fear, anger, contempt, disgust, happiness, neutrality, sadness, and surprise) yielded the highest accuracy of 91.42 % on the IRDatabase dataset. Combining EfficientNet-B7 with GWO and Gradient Boosting for seven distinct emotions (anger, disgust, fear, happiness, neutrality, sadness, and surprise) yielded the highest accuracy of 99.48 % on the KTFE dataset. These results demonstrate the effectiveness and reliability of the proposed approach for emotion identification in thermal images, making it a viable way to overcome the drawbacks of conventional visible-light-based FER systems.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1016/j.image.2025.117363
dc.identifier.issn0923-5965
dc.identifier.issn1879-2677
dc.identifier.scopus2-s2.0-105008188549
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.image.2025.117363
dc.identifier.urihttps://hdl.handle.net/20.500.12712/42208
dc.identifier.volume138en_US
dc.identifier.wosWOS:001516193800001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSignal Processing-Image Communicationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEmotion Recognitionen_US
dc.subjectThermal Imagesen_US
dc.subjectDeep Learningen_US
dc.subjectTransfer Learningen_US
dc.subjectGrey Wolf Optimizationen_US
dc.subjectEfficientNet-B7en_US
dc.titleRobust Emotion Recognition in Thermal Imaging with Convolutional Neural Networks and Grey Wolf Optimizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files