Publication:
Artificial Apnea Classification with Quantitative Sleep EEG Synchronization

dc.authorscopusid35738645000
dc.authorscopusid24460465000
dc.authorscopusid23993910900
dc.authorscopusid56247443100
dc.contributor.authorAkşahin, M.
dc.contributor.authorAydın, S.
dc.contributor.authorFirat, H.
dc.contributor.authorEroğul, O.
dc.date.accessioned2020-06-21T14:28:05Z
dc.date.available2020-06-21T14:28:05Z
dc.date.issued2012
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Akşahin] Mehmet Feyzi, Department of Biomedical Engineering, Başkent Üniversitesi, Ankara, Turkey; [Aydın] Serap, Department of Electrical and Electronic Engineering, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Firat] Hikmet, Sleep Laboratory Ankara, Diskapi Yildirim Beyazit Instructional and Exploratory Hospital, Ankara, Turkey; [Eroğul] Osman, Biomedical and Clinical Engineering Center, Gülhane Acad. of Mil. Medicine, Ankara, Turkeyen_US
dc.description.abstractIn the present study, both linear and nonlinear EEG synchronization methods so called Coherence Function (CF) and Mutual Information (MI) are performed to obtain high quality signal features in discriminating the Central Sleep Apnea (CSA) and Obstructive Sleep Apnea (OSA) from controls. For this purpose, sleep EEG series recorded from patients and healthy volunteers are classified by using several Feed Forward Neural Network (FFNN) architectures with respect to synchronic activities between C3 and C4 recordings. Among the sleep stages, stage2 is considered in tests. The NN approaches are trained with several numbers of neurons and hidden layers. The results show that the degree of central EEG synchronization during night sleep is closely related to sleep disorders like CSA and OSA. The MI and CF give us cooperatively meaningful information to support clinical findings. Those three groups determined with an expert physician can be classified by addressing two hidden layers with very low absolute error where the average area of CF curves ranged form 0 to 10 Hz and the average MI values are assigned as two features. In a future work, these two features can be combined to create an integrated single feature for error free apnea classification. © Springer Science+Business Media, LLC 2010.en_US
dc.identifier.doi10.1007/s10916-010-9453-8
dc.identifier.endpage144en_US
dc.identifier.issn0148-5598
dc.identifier.issue1en_US
dc.identifier.pmid20703741
dc.identifier.scopus2-s2.0-84860313119
dc.identifier.scopusqualityQ1
dc.identifier.startpage139en_US
dc.identifier.urihttps://doi.org/10.1007/s10916-010-9453-8
dc.identifier.volume36en_US
dc.identifier.wosWOS:000303823600014
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Medical Systemsen_US
dc.relation.journalJournal of Medical Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApneaen_US
dc.subjectCoherence Functionen_US
dc.subjectEEG Classificationen_US
dc.subjectMutual Informationen_US
dc.subjectSleep EEGen_US
dc.titleArtificial Apnea Classification with Quantitative Sleep EEG Synchronizationen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files