Publication:
Deep Learning Models for Time-Series Forecasting of RF-EMF in Wireless Networks

dc.authorscopusid57225668239
dc.authorscopusid56459776800
dc.authorscopusid16230640200
dc.authorscopusid26768123100
dc.authorscopusid7102931414
dc.authorscopusid14009246700
dc.authorwosidDuong, Trung Q/I-1291-2013
dc.authorwosidNguyen, Chi/Hmo-6245-2023
dc.authorwosidKurnaz, Cetin/S-3469-2016
dc.authorwosidCheema, Adnan Ahmad/Isu-3128-2023
dc.authorwosidDuong, Trung Q./Aai-6708-2020
dc.contributor.authorNguyen, Chi
dc.contributor.authorCheema, Adnan Ahmad
dc.contributor.authorKurnaz, Cetin
dc.contributor.authorRahimian, Ardavan
dc.contributor.authorBrennan, Conor
dc.contributor.authorDuong, Trung Q.
dc.contributor.authorIDDuong, Trung Q/0000-0002-4703-4836
dc.contributor.authorIDKurnaz, Cetin/0000-0003-3436-899X
dc.contributor.authorIDNguyen, Chi Yen/0000-0001-5930-5536
dc.contributor.authorIDBrennan, Conor/0000-0002-0405-3869
dc.date.accessioned2025-12-11T01:31:42Z
dc.date.issued2024
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Nguyen, Chi; Cheema, Adnan Ahmad; Rahimian, Ardavan] Ulster Univ, Sch Engn, SenComm Res Lab, Belfast BT15 1AP, North Ireland; [Nguyen, Chi; Duong, Trung Q.] Queens Univ Belfast, Sch Elect Elect Engn & Comp Sci, Belfast BT7 1NN, North Ireland; [Kurnaz, Cetin] Ondokuz Mayis Univ, Dept Elect & Elect Engn, TR-55270 Samsun, Turkiye; [Brennan, Conor] Dublin City Univ, Sch Elect Engn, Dublin D09 Y074 9, Ireland; [Duong, Trung Q.] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1C 5S7, Canadaen_US
dc.descriptionDuong, Trung Q/0000-0002-4703-4836; Kurnaz, Cetin/0000-0003-3436-899X; Nguyen, Chi Yen/0000-0001-5930-5536; Brennan, Conor/0000-0002-0405-3869en_US
dc.description.abstractRadio-frequency electromagnetic field (RF-EMF) forecasting plays an important role in the evaluation of regulatory compliance, network planning and system optimization. The knowledge of RF-EMF levels is essential to ensure compliance with standards and avoid public health concerns, especially with the arrival of new frequencies and scenarios in fifth-generation (5G) and sixth generation (6G) wireless networks. This work provides a comprehensive study on time series forecasting for RF-EMF measured in frequency from 100 kHz - 3 GHz. The state-of-the-art deep learning model architectures consist of deep neural network (DNN), convolutional neural network (CNN), long-short term memory (LSTM), and transformer are applied for time series forecasting. The prediction performance is evaluated under three different scenarios - namely single-step input single-step output (SISO), multi-step input single-step output (MISO), and multi-step input multi-step output (MIMO). The findings from the simulation demonstrate that SISO forecasting is inadequate in predicting long-term radio-frequency electromagnetic fields (RF-EMF) data as it lacks accuracy while MISO and MIMO forecasting scenarios offer more precise predictions. Specifically, in these two scenarios where the input width and label width are both set to 20 steps, the LSTM and CNN models exhibit superior performance compared to other models. Nonetheless, as the input width and label width in a MIMO scenario increase, the accuracy of both CNN and LSTM models decline considerably, whereas the transformer model consistently maintains good performance. Additionally, the transformer model continues to deliver accurate predictions as the label width and shift length increase, which is not the case for DNN, CNN, and LSTM models.en_US
dc.description.sponsorshipCanada Excellence Research Programen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.doi10.1109/OJCOMS.2024.3365708
dc.identifier.endpage1414en_US
dc.identifier.issn2644-125X
dc.identifier.scopus2-s2.0-85187269082
dc.identifier.scopusqualityQ1
dc.identifier.startpage1399en_US
dc.identifier.urihttps://doi.org/10.1109/OJCOMS.2024.3365708
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44340
dc.identifier.volume5en_US
dc.identifier.wosWOS:001184777000001
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Open Journal of the Communications Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectForecastingen_US
dc.subjectPredictive Modelsen_US
dc.subject6G Mobile Communicationen_US
dc.subjectFrequency Measurementen_US
dc.subjectData Modelsen_US
dc.subjectConvolutional Neural Networksen_US
dc.subject5G Mobile Communicationen_US
dc.subjectCNNen_US
dc.subjectDeep Learningen_US
dc.subjectEMFen_US
dc.subjectForecastingen_US
dc.subjectLSTMen_US
dc.subjectRF-EMFen_US
dc.subjectTime-Seriesen_US
dc.subjectTransformeren_US
dc.subject6Gen_US
dc.titleDeep Learning Models for Time-Series Forecasting of RF-EMF in Wireless Networksen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files