Publication: External Validation of a Clinical Prediction Model in Multiple Sclerosis
| dc.authorscopusid | 60195403700 | |
| dc.authorscopusid | 55028512500 | |
| dc.authorscopusid | 56580275300 | |
| dc.authorscopusid | 10141567500 | |
| dc.authorscopusid | 23062131200 | |
| dc.authorscopusid | 6701728553 | |
| dc.authorscopusid | 57208931908 | |
| dc.authorwosid | Soysal, Aysun/Aax-7696-2021 | |
| dc.authorwosid | Al-Harbi, Talal/P-7757-2015 | |
| dc.authorwosid | Boz, Cavit/V-5127-2017 | |
| dc.authorwosid | Karabudak, Rana/Hjh-2490-2023 | |
| dc.authorwosid | Shaygannejad, Vahid/N-3495-2018 | |
| dc.authorwosid | Türkoğlu, Recai/B-9336-2014 | |
| dc.authorwosid | Malpas, Charles/L-4741-2019 | |
| dc.contributor.author | Moradi, Nahid | |
| dc.contributor.author | Sharmin, Sifat | |
| dc.contributor.author | Malpas, Charles B. | |
| dc.contributor.author | Shaygannejad, Vahid | |
| dc.contributor.author | Terzi, Murat | |
| dc.contributor.author | Boz, Cavit | |
| dc.contributor.author | MSBase Study Grp | |
| dc.contributor.authorID | Al-Harbi, Talal/0000-0001-5714-6789 | |
| dc.contributor.authorID | Turkoglu, Recai/0000-0001-9724-851X | |
| dc.contributor.authorID | Malpas, Charles/0000-0003-0534-3718 | |
| dc.contributor.authorID | Moradi, Nahid/0000-0001-6253-4487 | |
| dc.date.accessioned | 2025-12-11T01:33:03Z | |
| dc.date.issued | 2023 | |
| dc.department | Ondokuz Mayıs Üniversitesi | en_US |
| dc.department-temp | [Moradi, Nahid; Sharmin, Sifat; Malpas, Charles B.; Kalincik, Tomas] Univ Melbourne, Dept Med, Clin Outcomes Res Unit CORe, Parkville, Vic, Australia; [Malpas, Charles B.; Kalincik, Tomas] Royal Melbourne Hosp, MS Ctr, Dept Neurol, Level 4 East,Grattan St, Parkville, Vic 3050, Australia; [Shaygannejad, Vahid] Isfahan Univ Med Sci, Esfahan, Iran; [Terzi, Murat] Ondokuz Mayis Univ, Fac Med, Samsun, Turkey; [Boz, Cavit] Farabi Hosp, KTU Fac Med, Trabzon, Turkey; [Yamout, Bassem; Khoury, Samia J.] Amer Univ Beirut, Nehme & Therese Tohme Multiple Sclerosis Ctr, Med Ctr, Beirut, Lebanon; [Turkoglu, Recai] Haydarpasa Numune Training & Res Hosp, Istanbul, Turkey; [Karabudak, Rana] Hacettepe Univ, Fac Med, Dept Neurol, Ankara, Turkey; [Shalaby, Nevin] Cairo Univ, Dept Neurol, Kasr Al Ainy MS Res Unit KAMSU, Cairo, Egypt; [Soysal, Aysun] Bakirkoy Educ & Res Hosp Psychiat & Neurol Dis, Istanbul, Turkey; [Altintas, Ayse] Koc Univ, Sch Med, Dept Neurol, Istanbul, Turkey; [Inshasi, Jihad] Rashid Hosp, Dubai, U Arab Emirates; [Al-Harbi, Talal] King Fahad Specialist Hosp, Dept Neurol, Dammam, Saudi Arabia; [Alroughani, Raed] Amiri Hosp, Dept Med, Div Neurol, Sharq, Kuwait | en_US |
| dc.description | Al-Harbi, Talal/0000-0001-5714-6789; Turkoglu, Recai/0000-0001-9724-851X; Malpas, Charles/0000-0003-0534-3718; Moradi, Nahid/0000-0001-6253-4487 | en_US |
| dc.description.abstract | Background: Timely initiation of disease modifying therapy is crucial for managing multiple sclerosis (MS). Objective: We aimed to validate a previously published predictive model of individual treatment response using a non-overlapping cohort from the Middle East. Methods: We interrogated the MSBase registry for patients who were not included in the initial model development. These patients had relapsing MS or clinically isolated syndrome, a recorded date of disease onset, disability and dates of disease modifying therapy, with sufficient follow-up pre- and post-baseline. Baseline was the visit at which a new disease modifying therapy was initiated, and which served as the start of the predicted period. The original models were used to translate clinical information into three principal components and to predict probability of relapses, disability worsening or improvement, conversion to secondary progressive MS and treatment discontinuation as well as changes in the area under disability-time curve (Delta AUC). Prediction accuracy was assessed using the criteria published previously. Results: The models performed well for predicting the risk of disability worsening and improvement (accuracy: 81%-96%) and performed moderately well for predicting the risk of relapses (accuracy: 73%-91%). The predictions for Delta AUC and risk of treatment discontinuation were suboptimal (accuracy < 44%). Accuracy for predicting the risk of conversion to secondary progressive MS ranged from 50% to 98%. Conclusion: The previously published models are generalisable to patients with a broad range of baseline characteristics in different geographic regions. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1177/13524585221136036 | |
| dc.identifier.endpage | 269 | en_US |
| dc.identifier.issn | 1352-4585 | |
| dc.identifier.issn | 1477-0970 | |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.pmid | 36448727 | |
| dc.identifier.scopus | 2-s2.0-85143590924 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 261 | en_US |
| dc.identifier.uri | https://doi.org/10.1177/13524585221136036 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/44516 | |
| dc.identifier.volume | 29 | en_US |
| dc.identifier.wos | WOS:000912172800001 | |
| dc.identifier.wosquality | Q1 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sage Publications Ltd | en_US |
| dc.relation.ispartof | Multiple Sclerosis Journal | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Outcome Prediction | en_US |
| dc.subject | Individual Therapy Response | en_US |
| dc.subject | External Validation | en_US |
| dc.subject | Multiple Sclerosis | en_US |
| dc.title | External Validation of a Clinical Prediction Model in Multiple Sclerosis | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |
