Publication:
External Validation of a Clinical Prediction Model in Multiple Sclerosis

dc.authorscopusid60195403700
dc.authorscopusid55028512500
dc.authorscopusid56580275300
dc.authorscopusid10141567500
dc.authorscopusid23062131200
dc.authorscopusid6701728553
dc.authorscopusid57208931908
dc.authorwosidSoysal, Aysun/Aax-7696-2021
dc.authorwosidAl-Harbi, Talal/P-7757-2015
dc.authorwosidBoz, Cavit/V-5127-2017
dc.authorwosidKarabudak, Rana/Hjh-2490-2023
dc.authorwosidShaygannejad, Vahid/N-3495-2018
dc.authorwosidTürkoğlu, Recai/B-9336-2014
dc.authorwosidMalpas, Charles/L-4741-2019
dc.contributor.authorMoradi, Nahid
dc.contributor.authorSharmin, Sifat
dc.contributor.authorMalpas, Charles B.
dc.contributor.authorShaygannejad, Vahid
dc.contributor.authorTerzi, Murat
dc.contributor.authorBoz, Cavit
dc.contributor.authorMSBase Study Grp
dc.contributor.authorIDAl-Harbi, Talal/0000-0001-5714-6789
dc.contributor.authorIDTurkoglu, Recai/0000-0001-9724-851X
dc.contributor.authorIDMalpas, Charles/0000-0003-0534-3718
dc.contributor.authorIDMoradi, Nahid/0000-0001-6253-4487
dc.date.accessioned2025-12-11T01:33:03Z
dc.date.issued2023
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Moradi, Nahid; Sharmin, Sifat; Malpas, Charles B.; Kalincik, Tomas] Univ Melbourne, Dept Med, Clin Outcomes Res Unit CORe, Parkville, Vic, Australia; [Malpas, Charles B.; Kalincik, Tomas] Royal Melbourne Hosp, MS Ctr, Dept Neurol, Level 4 East,Grattan St, Parkville, Vic 3050, Australia; [Shaygannejad, Vahid] Isfahan Univ Med Sci, Esfahan, Iran; [Terzi, Murat] Ondokuz Mayis Univ, Fac Med, Samsun, Turkey; [Boz, Cavit] Farabi Hosp, KTU Fac Med, Trabzon, Turkey; [Yamout, Bassem; Khoury, Samia J.] Amer Univ Beirut, Nehme & Therese Tohme Multiple Sclerosis Ctr, Med Ctr, Beirut, Lebanon; [Turkoglu, Recai] Haydarpasa Numune Training & Res Hosp, Istanbul, Turkey; [Karabudak, Rana] Hacettepe Univ, Fac Med, Dept Neurol, Ankara, Turkey; [Shalaby, Nevin] Cairo Univ, Dept Neurol, Kasr Al Ainy MS Res Unit KAMSU, Cairo, Egypt; [Soysal, Aysun] Bakirkoy Educ & Res Hosp Psychiat & Neurol Dis, Istanbul, Turkey; [Altintas, Ayse] Koc Univ, Sch Med, Dept Neurol, Istanbul, Turkey; [Inshasi, Jihad] Rashid Hosp, Dubai, U Arab Emirates; [Al-Harbi, Talal] King Fahad Specialist Hosp, Dept Neurol, Dammam, Saudi Arabia; [Alroughani, Raed] Amiri Hosp, Dept Med, Div Neurol, Sharq, Kuwaiten_US
dc.descriptionAl-Harbi, Talal/0000-0001-5714-6789; Turkoglu, Recai/0000-0001-9724-851X; Malpas, Charles/0000-0003-0534-3718; Moradi, Nahid/0000-0001-6253-4487en_US
dc.description.abstractBackground: Timely initiation of disease modifying therapy is crucial for managing multiple sclerosis (MS). Objective: We aimed to validate a previously published predictive model of individual treatment response using a non-overlapping cohort from the Middle East. Methods: We interrogated the MSBase registry for patients who were not included in the initial model development. These patients had relapsing MS or clinically isolated syndrome, a recorded date of disease onset, disability and dates of disease modifying therapy, with sufficient follow-up pre- and post-baseline. Baseline was the visit at which a new disease modifying therapy was initiated, and which served as the start of the predicted period. The original models were used to translate clinical information into three principal components and to predict probability of relapses, disability worsening or improvement, conversion to secondary progressive MS and treatment discontinuation as well as changes in the area under disability-time curve (Delta AUC). Prediction accuracy was assessed using the criteria published previously. Results: The models performed well for predicting the risk of disability worsening and improvement (accuracy: 81%-96%) and performed moderately well for predicting the risk of relapses (accuracy: 73%-91%). The predictions for Delta AUC and risk of treatment discontinuation were suboptimal (accuracy < 44%). Accuracy for predicting the risk of conversion to secondary progressive MS ranged from 50% to 98%. Conclusion: The previously published models are generalisable to patients with a broad range of baseline characteristics in different geographic regions.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1177/13524585221136036
dc.identifier.endpage269en_US
dc.identifier.issn1352-4585
dc.identifier.issn1477-0970
dc.identifier.issue2en_US
dc.identifier.pmid36448727
dc.identifier.scopus2-s2.0-85143590924
dc.identifier.scopusqualityQ1
dc.identifier.startpage261en_US
dc.identifier.urihttps://doi.org/10.1177/13524585221136036
dc.identifier.urihttps://hdl.handle.net/20.500.12712/44516
dc.identifier.volume29en_US
dc.identifier.wosWOS:000912172800001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofMultiple Sclerosis Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectOutcome Predictionen_US
dc.subjectIndividual Therapy Responseen_US
dc.subjectExternal Validationen_US
dc.subjectMultiple Sclerosisen_US
dc.titleExternal Validation of a Clinical Prediction Model in Multiple Sclerosisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files