Publication:
Dynamical Analysis of the Irving-Mullineux Oscillator Equation of Fractional Order

dc.authorscopusid23024059000
dc.authorscopusid16303495600
dc.authorscopusid8842321100
dc.contributor.authorAbbas, S.
dc.contributor.authorErtürk, V.S.
dc.contributor.authorMomani, S.
dc.date.accessioned2020-06-21T13:56:50Z
dc.date.available2020-06-21T13:56:50Z
dc.date.issued2014
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Abbas] Syed, School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, HP, India; [Ertürk] Vedat Suat, Department of Mathematics, Ondokuz Mayis University Faculty of Science and Arts, Samsun, Turkey; [Momani] Shaher M., Department of Mathematics, The University of Jordan, Amman, Jordan, Faculty of Sciences, King Abdulaziz University, Jeddah, Makkah Province, Saudi Arabiaen_US
dc.description.abstractObjective: Objective of this work is to study the fractional counterpart of the Irving-Mullineux nonlinear oscillator equation and compare the result with the integer order equation theoretically as well as numerically. Methods For analytical results we use contraction principle to show the existence of the solution and then eigenvalue analysis to check the stability of the equilibrium points. Adams-type predictor-corrector method has been used for the numerical simulation. Results Stability conditions are given in terms of the parameter α. Numerical simulations indicate that the fractional differential equation shows stable result compared to their integer counterpart. Conclusion The obtained results shown that the stability depends on the parameter α and numerical results indicate that the fractional system may stabilize the corresponding integer order system. The results obtained also show that when α→1, the solutions of fractional equation reduce to the solution of corresponding integer equation. Practice Fractional order system can be taken while analyzing the oscillatory behavior of certain system. It is more general and sometimes gives better approximate results. Implications The fractional order equation may give better results than integer order equation when applied to real life problems. © 2014 Elsevier B.V.en_US
dc.identifier.doi10.1016/j.sigpro.2014.03.019
dc.identifier.endpage176en_US
dc.identifier.issn0165-1684
dc.identifier.scopus2-s2.0-84898441450
dc.identifier.scopusqualityQ1
dc.identifier.startpage171en_US
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2014.03.019
dc.identifier.volume102en_US
dc.identifier.wosWOS:000337207500017
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofSignal Processingen_US
dc.relation.journalSignal Processingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdams-Type Predictor-Corrector Methoden_US
dc.subjectCaputo's Derivativeen_US
dc.subjectLipschitz Conditionen_US
dc.titleDynamical Analysis of the Irving-Mullineux Oscillator Equation of Fractional Orderen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files