Publication:
Diagnosis of Diabetes by Using Adaptive SVM and Feature Selection

dc.authorscopusid43261304900
dc.authorscopusid22953804000
dc.contributor.authorGürbüz, E.
dc.contributor.authorKilic, E.
dc.date.accessioned2020-06-21T09:36:51Z
dc.date.available2020-06-21T09:36:51Z
dc.date.issued2011
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Gürbüz] Emre, Ondokuz Mayis Üniversitesi, Samsun, Turkey; [Kilic] Erdal, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractIn this study, a new Support Vector Machine (SVM) based method for diagnosis of diabetes is proposed. In the proposed method, feature of adaptibility is added to the support vector machine. Thus, a new kind of SVM named "Adaptive SVM" is proposed, and by using it together with the Feature Selection Method, smartly diagnosis of diseases is aimed. During the training and testing of this newly designed smart system, diabetes data set which is obtained from the medical database of University of California is used. It is observed that classification rate of this newly proposed method on the diabetes daha set is more successful than the similar studies which are implemented so far and which are in the literature. © 2011 IEEE.en_US
dc.identifier.doi10.1109/SIU.2011.5929740
dc.identifier.endpage45en_US
dc.identifier.isbn9781457704635
dc.identifier.scopus2-s2.0-79960409982
dc.identifier.startpage42en_US
dc.identifier.urihttps://doi.org/10.1109/SIU.2011.5929740
dc.language.isotren_US
dc.relation.ispartof-- 2011 IEEE 19th Signal Processing and Communications Applications Conference, SIU 2011en_US
dc.relation.journal2011 IEEE 19th Signal Processing and Communications Applications Conference, SIU 2011en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDiagnosis of Diabetes by Using Adaptive SVM and Feature Selectionen_US
dc.title.alternativeUyarlanabilir DVM ve Özellik Seçme Yöntemi Kullanılarak Şeker Hastalığının Teşhis Edilmesi?en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files