Publication:
Mitigating Device Heterogeneity for Enhanced Indoor Positioning System Performance Using Deep Feature Learning

dc.authorscopusid59516082500
dc.authorscopusid57431417600
dc.authorscopusid58296122000
dc.authorwosidOzturk, Ibrahim/Agq-5541-2022
dc.authorwosidYousif, Mosab Aboidrees Altraifi/Oxc-7562-2025
dc.contributor.authorSaeed, Mohamedalfateh T. M.
dc.contributor.authorYousif, Mosab A. A.
dc.contributor.authorOzturk, Ibrahim
dc.date.accessioned2025-12-11T00:46:04Z
dc.date.issued2025
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Saeed, Mohamedalfateh T. M.] Ondokuz Mayis Univ, Dept Elect & Elect Engn, TR-55139 Samsun, Turkiye; [Yousif, Mosab A. A.] Istanbul Univ Cerrahpasa, Dept Elect & Elect Engn, TR-34320 Istanbul, Turkiye; [Yousif, Mosab A. A.] Univ Gezira, Dept Elect Engn, Wad Madani 21111, Gezira, Sudan; [Ozturk, Ibrahim] Osmaniye Korkut Ata Univ, Dept Elect & Elect Engn, TR-80000 Osmaniye, Turkiyeen_US
dc.description.abstractIndoor Positioning Systems (IPS) are essential for delivering accurate location-based services in environments where Global Navigation Satellite Systems (GNSS) are ineffective. The Received Signal Strength Indicator (RSSI)-based IPS leverages the existing access point infrastructure to provide a cost-effective solution for indoor location determination. However, device heterogeneity, characterized by variations in hardware, sensors, and software between devices, poses a significant challenge, often degrading positioning accuracy and robustness. This study investigates the impact of device heterogeneity on IPS performance using the TUJI1 dataset, which comprises RSSI measurements collected from five different devices. After comprehensive preprocessing of the RSSI signals, the study proposes a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework, leveraging advanced feature extraction techniques to improve positioning accuracy and mitigate the effects of device variability. In this framework, RSSI fingerprints are represented as two-dimensional (2D) images, enabling the CNN component to capture spatial co-occurrence patterns among access points, while the LSTM component models inter-access point dependencies, resulting in robust, device-agnostic feature embeddings. The proposed model achieves a three-dimensional (3D) mean positioning error of 2.20 m, outperforming traditional k-Nearest Neighbors (k-NN) methods. In cross-device evaluations, the model demonstrates improved robustness, reducing positioning errors by up to 0.17 m compared to conventional approaches. These results highlight the effectiveness of the CNN-LSTM architecture in addressing device heterogeneity, offering a scalable and efficient solution for diverse IPS environments. This study advances the field of indoor positioning by providing a robust framework capable of maintaining high accuracy in the presence of device variability, thus contributing to the development of more reliable and adaptable IPS technologies.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2025.3621505
dc.identifier.endpage180217en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-105019549551
dc.identifier.scopusqualityQ1
dc.identifier.startpage180203en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3621505
dc.identifier.urihttps://hdl.handle.net/20.500.12712/39041
dc.identifier.volume13en_US
dc.identifier.wosWOS:001600775100030
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Institute of Electrical and Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAccuracyen_US
dc.subjectLocation Awarenessen_US
dc.subjectIP Networksen_US
dc.subjectPerformance Evaluationen_US
dc.subjectFingerprint Recognitionen_US
dc.subjectWireless Fidelityen_US
dc.subjectRobustnessen_US
dc.subjectMeasurementen_US
dc.subjectHardwareen_US
dc.subjectFeature Extractionen_US
dc.subjectIndoor Positioningen_US
dc.subjectIndoor Localizationen_US
dc.subjectDevice Heterogeneityen_US
dc.subjectCNN-LSTMen_US
dc.subjectFeature Extractionen_US
dc.subjectDimensionality Reductionen_US
dc.subjectDeep Feature Learningen_US
dc.titleMitigating Device Heterogeneity for Enhanced Indoor Positioning System Performance Using Deep Feature Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files