Publication:
Forecasting of the Fuzzy Univariate Time Series by the Optimal Lagged Regression Structure Determined Based on the Genetic Algorithm

dc.authorscopusid56011249400
dc.contributor.authorEren, M.
dc.date.accessioned2020-06-21T13:13:04Z
dc.date.available2020-06-21T13:13:04Z
dc.date.issued2018
dc.departmentOndokuz Mayıs Üniversitesien_US
dc.department-temp[Eren] Miraç, Ondokuz Mayis Üniversitesi, Samsun, Turkeyen_US
dc.description.abstractEstimation obtained through classical regression model reveals the fitting (or prediction) and projection (or forecast) values with a certain error. This situation leads to loss of information and imprecision of data. However, if the imprecise information is converted to fuzzy data rather than single value, an estimation procedure can be obtained in which observation errors are hidden in fuzzy coefficients. Thus, it would be more realistic to make an interval estimate instead of a single value estimate with a certain margin of error. Therefore, in this study, a novel fuzzy least squares method developed for the variables expressed by LR-type fuzzy numbers, based on the optimal classical lagged regression model structure determined by the genetic algorithm, was addressed. a numerical example to explain how the proposed method is applicable was considered. © 2018, Bucharest University of Economic Studies. All rights reserved.en_US
dc.identifier.doi10.24818/18423264/52.2.18.12
dc.identifier.endpage215en_US
dc.identifier.issn1842-3264
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85050106514
dc.identifier.scopusqualityQ3
dc.identifier.startpage201en_US
dc.identifier.urihttps://doi.org/10.24818/18423264/52.2.18.12
dc.identifier.volume52en_US
dc.identifier.wosWOS:000438007500012
dc.identifier.wosqualityQ3
dc.institutionauthorEren, M.
dc.language.isoenen_US
dc.publisherBucharest University of Economic Studiesen_US
dc.relation.ispartofEconomic Computation and Economic Cybernetics Studies and Researchen_US
dc.relation.journalEconomic Computation and Economic Cybernetics Studies and Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectForecastingen_US
dc.subjectFuzzy Least Squares Methoden_US
dc.subjectGenetic Algorithmsen_US
dc.subjectLR-Type Fuzzy Numbersen_US
dc.subjectTime Seriesen_US
dc.titleForecasting of the Fuzzy Univariate Time Series by the Optimal Lagged Regression Structure Determined Based on the Genetic Algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files